Surbey of モndia.

PROFESSIONAL PAPERS. igo5.

SERIAL NO. 8 .
\qquad
EXPERIMENTS MADE TO DETERMINE THE TEMPERATURE CO-EFFICIENTS OF WATSON'S MAGNETOGRAPHS,
\bullet
BY
Captain H. A. Denholm Fraser, R.E., DEPUTY SUPERINTENDENT SURVEY OF INDIA.

PREPARED UNDER THE DIRECTION OF
COlONEL J. R. HOBDAY, I.A., OFFG. SURVEYOR GENERAL OF INDIA,

CALCUTTA:
OFFICE OF THE SUPERINTENDENT OF GOVERNMENT PRINTING, INDIA, 1905.

Xibrare

of tbe
Universite of wisconsin

$$
2
$$

-
-

$$
a
$$

-
- •
-
-

Digitized by GOOgle

Professional Papers.
1905.

SERIAL No. 8:

Agents for the sale of Books published by the Superintendent of Government Printing, India, Calcutta.

In Emglabd.

E. A. Arnold, 41 \& 43, Madox Street, Bond Street, London, W.
Constable \& Co., 16, James. Street, Haymarket, London, W.
P. S. King \& Son, 2 \& 4, Great Smith Street, Westminster, London.
Kggan Paul, Treach Trübere \& Co., Charing Croes Road, London.
Brranard Quaritch, 15, Piccadilly, London.
B. H. Blackwell, 50 \& 5I, Broad Street, Oxford.

Deightom Bell \& Co., Cambridge.
H. S. Kime \& Co., 65, Cornhill, and 9, Pall Mall, London.

On the Contingnt.

R. Friediãnder \& Sohn, 11, Carlstrasse, Berlin, N.W.

Orto Harrazsowitz, Leipzig.
K arl Hirrsemann, Leipzig.

Ernbst Leroux, 28, Rue Bonaparte, Paris. Martinos Nishofy, The Hague, Holland.

In India.

Thacerr, Spine \& Co., Calcutta and Simla.
Nemman \& Co., Calcutta.
S. K. Latiri \& Co., Calcutta.
R. Cambray \& Co., Calcutta.

Higeimbotaam \& Co., Madras.
V. Kalyamarana, Aiyer \& Co., Madras.
G. A. Natbsam \& Co., Madras.

Thacker \& Co., Ld., Bombay.
A. J. Combrider \& Co., Bombay.
D. B. Taraporbvala, Sons \& Co., Bombay.

Radgabai Atmaram Sagoon, Bombay.
N. B. Mathur, Superintendent, Nazair Kanun Hind Press, Allahabad.
Rai Sahib M. Gulab Singe \& Sors, Mufid-I-Am Press, Lahore.
Superintendewt, Ambrican Baptist Mission Press, Rangoon.

Surbey of Endia.

Professional Papers.

1905.

Serial No. 8.

PREPARED UNDER THE DIRECTION OF
Colonel J. R. Hobday, l.A.,
OPFG. SURVEYOR.GENERAL OP INDIA.

CALCUTTA:
OFFICE OF THE SUPERINTENDENT OF GOVERNMENT PRINTING, INDIA. 1905.

CALCUTTA:
GOVERNMENT OF INDIA CENTRAL PRINTING OPFICE,
8, hagtings etreet.

- -

THE TEMPERATURE EXPERIMENTS,

By Captain H. A. Denholm Fraser, Re.,
deputy supraimtemdernt, survey op india.

Abstract

. 1. As soon as the first set of Watson's Magnetograph was erected in the underground room Preliminary arrangements. at Debra Dun, arrangements were made to find out the temperature coefficient for the horizontal force instrument. At this time the two remaining sets of Watson's Magnetograph had been received, and as the magnets and quartz fibres were interchangeable in all three sets, an excellent opportunity was at hand for finding the correction constant for each instrument.

In order to correct for changes in the horizontal component during the period occupied by each experiment, magnetograph No. 2 was temporarily erected on wooden trestles in a room in the 12 -inch photo-heliograph observatory. This room was moderately well protected from changes of temperature, but being very close to the massive iron dome of the observatory, could only be used for magnetic work on the condition that the dome remained unshifted, and this condition was maintained throughout.

Two small brass stoves for burning charcoal and the necessary connecting pipes having been prepared, the first experiment was commenced on 3rd January 1902. Previously to this date, and at frequent intervals during the whole series of experiments, absolute observations were taken with No. I Magnetograph by Cooke for finding and checking the base line values of both magnetographs, and for the determination of the value of the moment of the magnet used in the deflection experiments for finding the scale values of the horizontal force magnetographs.
2. Work commenced as early as possible in the day, by the observer noting the temperature

The routine briefly described. together with the time. He then did the same in the underground room (No. I Magnetograph) and lit the fires. Thereafter temperature readings were taken every 15 minutes in the underground room and every half hour for No. 2 instrument, and the fires were replenished with fuel as often as necessary. After a high temperature had been maintained for some hours, the doors were opened, the fires removed, and the room was allowed to cool down. Usually no readings were taken after 4 P.M.
3. No. 2 set was started on 18th December and records were taken daily till the 3rd January, Diary of the experiments made. the date of the first experiment, to make sure that the instruments were in a stable condition.

In the first experiment magnet No. 1 with fibre 2 was mounted in No. I instrument, and magnet 2 with fibre 12 in No. 2 instrument.

The first experiment failed after a few hours' work owing to No. 2 instrument (which was mounted on trestles), receiving a jar whilst a temperature was being read, which threw it out of adjustment. During this experiment the glass covers had been kept in place over No. 1 instrument in the underground room, but it was found that the lag of temperature under the cover was so great, that it would be necessary to remove them in order to complete an experiment within the limits of a working day. Accordingly the cover of the H. F. instrument was removed, No. 2 instrument was re-adjusted, and after working satisfactorily for two days, the second experiment was started on the 6th January, a little after 7 o'clock in the morn ag, the doors of the underground
room having been left open all the previous night in order to start with as low a temperature as possible.

The next few days were occupied in the temporary reduction of the observations to see whether any change of procedure should be adopted in future experiments, and as the results seemed satisfactory, the following changes were made on the $13^{\text {th }}$ January: Magnet No. 1 and fibre 2 were transferred to No. 2 instrument, and magnet No. 2 with fibre 12 was adjusted in their place in No. 1 instrument. After allowing a short time for settlement, the 2nd experiment was carried through successfully on 15th January. This experiment was repeated on the 20th January, and on the 22 nd magnet 2 and fibre 12 were removed and magnet 3 with fibre 6 was mounted in their place in No. 1 instrument. No. 2 instrument was not altered.

The next day another temperature experiment was made with this new arrangement and was repeated on the 28th. During the experiments made previously to the 23rd January, temperatures were read on a Fahrt. thermometer a few feet away from the Cent. thermometer in the horizontal force instrument, but as the temperature changes in the room were often very rapid indeed, it was afterwards thought advisable to read a third (Centigrade) thermometer suspended vertically almost in contact with the torsion tube of the horizontal force instrument. This enabled a ręcord of the differences of the temperatures of the magnet itself and the air immediately surrounding the instrument to be maintained.

On the 29th January, magnet 3 and fibre 6 were removed from No. 1 instrument and magnet 2 and fibre 12 remounted. In removing this magnet on the 22nd, one of the 5 delicate glass hard magnets was accidentally broken. A spare magnet was mounted in its place, but this made it advisable to determine the temperature co-efficient afresh and find out whether the repair had caused any change. After completing satisfactorily this 3rd experiment with No. 2 magnet, the original intention was to close the cycle by repeating the first experiment, thus giving two inde. pendent determinations for each magnet and fibre.

However, an examination of the records obtained during the experiments with No. 3 magnet, revealed the fact that it had behaved abnormally. Either owing to a shift of the torsion tube as a whole or to the slipping of the quartz fibre at its points of attachment to the metal clips, certain sudden jumps were observable in the photographic records, which led to a further investigation pointing to the fact that a considerable slow shift in the base line value had been taking place. As it was thought that the peculiarity must be due to slip, the ends of the quartz fibre were resoldered, but on remounting magnet 3 and fibre 6 , and observing their behaviour by eye, it became evident that the slip was worse than before, so that No. 5 fibre was then tried in its place.

A series of deflections taken with this fibre in use showed that the magnet was steadily shifting into a position of less strain, the effect being apparently due to the inability of the solder to hold the ends of the quartz fibre rigidly.

This fibre was tried only for a short time, and was then removed and replaced by fibre No. 3 . The first set of deflections taken showed evidence of a similar but smaller slip, so the system was left in position for $1 \frac{1}{2}$ hours and again tested by deflections which this time gave no evidence of any tendency to drift. On the 5th February a trace was taken and the next day the temperature experiment was proceeded with.

The trace taken on the 5 th when developed showed unmistakable evidence of the instability of the system, so no further trial was made with this fibre. On the afternoon of the 7th February, fibre No. 4 was substituted for No. 3 and traces taken on the 8th and 9th. Though considerable drift had occurred at first, the system seemed to have settled down on the gth and a temperature experiment was therefore made on the loth February. On the IIth the fibre appeared to be still giving results free from drift, so the 2nd experiment was made on the $\mathbf{1 2 t h}$. From that date till
the 20th records were continuously taken with magnet 3 and fibre 4 , in order to test the behaviour of the system, and on the 21 st, magnet 1 and fibre 2 were removed from No. 2 instrument (in which they had been giving records since the $13^{\text {th }}$ January), and were suspended again in No. I instrument.

Fibre 4 and magnet 3 were then erected in No. 2 instrument and satisfactory records were taken on both till the 24 th February on which date the second temperature experiment with magnet 1 and fibre 2 was carried out, thus closing the series.

From this date onwards No. I instrument has been used for the routine work of the observatory, but No. 2 instrument was dismantled after further records for about one month had been taken in order to test the behaviour of fibre No. 4 .

The reduction of the results was postponed till some months later owing to urgent work at the time, and there was no further opportunity of repeating any of the experiments which proved doubtful.
4. The first thing was to obtain an approximate value for the temperature co-efficient, in - The reduction of the results. order to correct the records of No. 3 Magnetograph evaluate the base lines of both instruments.

As a first approximation it was assumed that the temperature co-efficient was the same fo_{r} both instruments. Several experiments were then worked out on Form C, the figures in column 10 and 14 being omitted and those in column 4 corrected by subtracting from them the corresponding figures in column 9.

Column 15 was then column 7 -column 13, and the approximate results in column 16 were obtained by dividing the figures in column 15 as thus altered by those in column 4 corrected as explained.

In this manner it was found that $+1^{\circ}$ Centigrade was approximately equivalent to $-12^{\circ} 0 \gamma^{*}$ of ordinate, and this value was used in both experiments made with magnet 1 and fibre 2 , for reducing the values given by No. 2 Magnetograph (vide forms C 1 and C 10).
(When subsequently working out the first of these experiments it was found that the temperature co-efficient of magnet 1 and fibre 2 was very nearly $12^{\prime} 7 \gamma$ and as this system was suspended in No. 2 Magnetograph during the whole of the experiments with the other magnets, it was used throughout the reductions entered in forms $\mathbf{C} 2$ to C 9 inclusive. In view of the small range of temperature of No. 2 instrument it is clear that the errors introduced in reductions $C 1$ and C io due to taking the temperature co-efficient as $12^{\circ} 0$ instead of about $12^{\circ} 5 \gamma$ can only change the results very slightly and it has not been thought necessary to recompute these two experiments using the latter more correct value.)

The absolute observations were then reduced and a mean value obtained for m° (the moment of magnet iA at zero Centigrade). This magnet was used throughout the experiments when taking deflections for finding the scale values of the different systems in the manner now to be explained.
5. In Watson's Magnetograph the scale value of the H. F. instrument is found by noting the Method of finding the scale value of the H. F. deflections produced at a known distance by a magnet Magnetograph.
south of the suspended magnet.

[^0]

In the figure, $S_{1} N_{1}$ is the H. F. magnet constrained into a position of 90° from the magnetic meridian by the torsion of the suspending quartz fibre. Calling T the torsion co-efficient of the fibre and A the total twist in degrees imparted to its upper end in order to carry the magnet from the magnetic meridian into the position shown, then the torsion couple is represented by $T\left(A-90^{\circ}\right)$.

Then if m_{1} be the moment of the suspended magnet and H the horizontal intensity, we have-

$$
\begin{equation*}
T\left(\mathrm{~A}-90^{\circ}\right)=m_{1} H \sin 90^{\circ}=m_{1} H . \tag{1}
\end{equation*}
$$

Suppose H to become $H-\Delta H$, the magnet will be deflected in the manner shown through a small angle α, and we get -

$$
\begin{array}{r}
T\left\{\mathrm{~A}-\left(90^{\circ}+\alpha\right)\right\}=m_{1}(H-\Delta H) \sin \left(90^{\circ}+\alpha\right) \\
=m_{1}(H-\Delta H) \cos . \alpha \ldots \ldots \ldots . \tag{2}
\end{array}
$$

Now let us suppose that H does not change, but that the magnet is brought into the position of equilibrium represented in equation (2) by means of another magnet of known moment m placed as shown in the figure at a distance $r=C C_{1}$.

Then, provided α is small so that cos. α is sensibly equal to unity, the couple acting on the suspended magnet $=\frac{2 m m_{1}}{r^{8}}\left(1+\frac{P}{r^{2}}\right)$ where P is the distribution co-efficient of the magnets.

This couple has by supposition caused a deflection a so that-

$$
T a=\frac{2 m m_{1}}{r^{3}}\left(1+\frac{P}{r^{2}}\right) .
$$

whence from equation (I) -

$$
T\left\{A-\left(90^{\circ}+a\right)\right\}=m_{1} M-\frac{2 m m_{1}}{r^{3}}\left(1+\frac{P}{r^{2}}\right) .
$$

Substituting in equation (2) we have-

$$
m_{1} H \quad \frac{2 m m_{1}}{r^{2}}\left(1+\frac{P}{r^{2}}\right)=m_{1}(H-\Delta H) \cos \alpha
$$

$$
\text { or } \Delta H=H(1-\sec \alpha)+\sec \alpha \frac{2 m}{r^{2}}\left(1+\frac{P}{r^{2}}\right)
$$

Putting $\sec \alpha=1$, this reduces to

$$
\Delta H=\frac{2 m}{r^{2}}\left(1+\frac{P}{r^{2}}\right)
$$

In practice r is about 1 metre, 80 that $\frac{P}{r^{2}}$ is negligible and we obtain

$$
\Delta H=\frac{2 m}{r^{3}}
$$

Then if x be the scale value in C. G. S. units corresponding to $\mathbf{I m m}$ of ordinate on the paper, and if n be the measure in millimetres of the deflection produced by the magnet whose moment is m, acting at the distance r from the suspended magnet, we have

$$
\begin{equation*}
x n=\Delta H=\frac{2 m}{r^{3}} \text { or } \mathrm{x}=\frac{2 m}{n r^{3}} . \tag{3}
\end{equation*}
$$

In this expression m is the actual moment of the magnet as used for taking deflections and should be written m_{t} where t is the temperature of the magnet. Calling m_{0} the moment of the magnet at zero Cent., we have

$$
m_{\mathrm{t}}=m_{0}\left\{1-q t-q_{1} t^{2}\right\} \text { or } m_{0}\left\{^{1}-Q t\right\}
$$

where Q is taken from the table of temperature corrections for the magnet.
Hence equation (3) should be written

- $\quad x=\frac{2 m_{0}\{1-Q t\}}{n r^{3}}$

But as the measuring scale used is divided into twenty-fifths of an inch, whereas x in formula (4) is in terms of 1 millimetre, the factor $1 \cdot 16$ must be inserted, and we get finally

$$
x_{1}=1 \cdot 019 \times \frac{2 m_{0}\{1-Q t\}}{n r^{3}}, \underset{\sim}{\text { where }} x_{1} \text { is the scale value corresponding to } 1-25 \text { th inch. }
$$

The distance r was measured with beam compasses from the centre of the suspended magnet to the centre of the deflecting magnet and the accordance of independent measures taken by different observers was greater than might have been expected, the greatest difference being less than $\mathrm{I}-50$ th inch. As a matter of fact r is not required with any very great accuracy, for in practice the average length of ordinate is about 60 mm , and it will suffice to measure this correctly within $\cdot 00001$ C. G. S., i.e. 1y. Taking $x=5 y$ (its approximate actual value), we see that it will suffice to find x within $\frac{x}{5} \div 60=\frac{1}{300}$ of its true value.

Then by giving approximate values as follows: $m=920$ C. G. S., $r=100 \mathrm{cms}$., $x=5 \gamma$, and substituting in equation (3), we find $n=36.8 \mathrm{~mm}$. If we now change x into $x+\frac{x}{300}$ and using the value just found for n again solve equation (3), we obtain $r=99^{\circ} 89 \mathrm{cms}$.

Thus it will suffice to measure r correctly to $0 \cdot 1 \mathrm{~cm}$., or say $\mathrm{I}-25$ th inch, and the method actually adopted of measuring the distance by beam compasses is therefore quite good enough for practical purposes.

In Watson's Magnetographs there is a simple arrangement for taking visual deflection readings, and the time taken for recording a complete set of five readings, the magnet being reversed every time, is only about two minutes.

In No. 1 magnetograph two deflection distances were used at about 100 and 120 cms.; in No. 2 instrument the nearer distance only is available.

The following tables show the values of the scale co-efficients determined during the various experiments and used in the reduction of the results:-

Table A r .
Abstract of scale values found for No. 2 H. F. Magnetograph during the temperature experiments.
Formula $x_{1}=r \cdot 016 \frac{2 m_{0}(1-Q t)}{n r^{2}}$ where x_{1} is the scale co-efficient for $1-25$ th inch. The mean moment m_{0} of the defecting magnet $1 A=1004^{123}$ (Table B).

Period.		$\begin{gathered} \text { Suspend } \\ \text { Cd } \\ \text { Magnet. } \end{gathered}$	Quartz fibre.	Meanobserved temperature $=t$.	Mean obser ved deflection $=n$.	Distance between magnets=r	Resulting scale co-eff cient $=x_{1}$.	Remarks.
From	To							
		No.	No.	Cent.	mm.	cms.	$\boldsymbol{\gamma}$	
3rd January	12th January	2	12	14	3574	$100 \cdot 209$	$5 \cdot 64$	
13th January	22nd January	1	2	15	$54 \cdot 26$	100'361	3:70	The mean value
22nd January	3 rd February	1	2	15	54.25	100'361	370	, $\begin{aligned} & 3.70 \text { has Been } \\ & \text { used through. }\end{aligned}$
4th February	20th February	1	2	16	54.08	100'361	371	\int out this period.
21st February	4th March .	3	4	19	$44 \cdot 26$	100'361	$4 * 53$	

Table A 2.
Abstract of scale values found for No. I H. F. Magnetograph during the temperature experiments.
Pormula $x_{1}=r$ roi $6 \frac{2 m m_{0}(1-Q t)}{n r^{3}}$ where x_{1} is the scale coefficient for 1-25th inch. The mean moment m_{0} of the deflecting magnet $1 \mathrm{~A}=1004 \cdot 23$ (Table B).

The agreement between the two values of the scale co-efficient for No. I instrument as shown in this last table is satisfactory and justifies the omission from the formula of the term involving P.

It should be noted that the distance r was measured once only for each instrument and subsequently corrections were applied to this distance by noting the distance of the centre of the magnet under trial from the centre of the box in which it was suspended.
6. Using the values found above, tables $B 1$ and $B 2$ were then completed, which give the

Reduction of results resumed.

 base line values obtained by using an assumed temperature co-efficient of 12.5γ per degree Cent. throughout. The greatest differences of temperature from the selected mean amounted in the case of No. I instrument to $+1^{0} \cdot 3$ and $-1^{0} \cdot 2$ on the 24th and 4th January, respectively, and in the case of No. 2 instrument to $+3^{\circ} \cdot 2$ and $+1^{\circ} \cdot 9$ on the 19th February and 3oth January, respectively. Consequently the errors due to taking an assumed value for the temperature co-efficient in place of the actual values subsequently determined does not appreciably affect the results.The reduction of the ten temperature experiments was then completed, the results of which are exhibited in tables C I to $C 10$.
-The charts reproduced at the end of this paper were then plotted and tables D_{1} to D io drawn up with a view to studying the behaviour of the instruments during each experiment. The conclusions arrived at are printed at the foot of each table and dealt with in the Appendix, and show that in most cases there is good reason to suppose that the magnet and fibre under experiment underwent changes during the course of experiment, and the only results that can be accepted with perfect confidence are those given by experiments Nos. 1 and 2 with magnet I and fibre 2.
7. The effect of a rise of temperature on a system consisting of a magnet suspended perGeneral considerations. pendicular to the meridian by a quartz fibre is (I) to increase the torsional resistance of the fibre,* and (2) to reduce the magnetic moment of the magnet, so that on both accounts the value of the horizontal force will appear to diminish. But if the temperatures of the fibre and magnet are not the same, the resulting value of the temperature co-efficient will necessarily be incorrect.

Thus, supposing the temperature of the magnet (and therefore its moment) to remain constant whilst the quartz fibre is heated, we should expect to find an apparent decrease of H. F., and vice versa if the fibre were cooled. Consequently, if during any period of the temperature experiment the fibre is $\frac{\text { hotter }}{\text { cooler }}$ than the magnet, the resulting temperature co-efficient will he too $\frac{\text { large }}{\text { small }}$ by an amount probably bearing a certain ratio to the difference of temperature between the magnet and its fibre.

On the other hand, for a rising $\frac{\text { falling }}{}$ temperature, the effect of any lag of temperature of the magnet behind that of the attached thermometer would make the temperature co-efficient too $\frac{\text { small }}{\text { large }}$, because the apparent change of force as measured from the curve would be divided by too $\frac{\text { large }}{\text { small }}$ a quantity.

Disturbances produced by air currents would not be expected in an instrument of this class because (1) the volume of air immediately surrounding the magnet is very small, and (2) the period of the magnet is very short and the copper damper acts rapidiy.

[^1]As a matter of lact there is no sign of fuzziness about any of the traces during the temperature experiments, and it is clear that this source of error did not exist.

A study of the diagrams shows that in every case the temperature co-efficient commences almost at once with an abnormally high value, which falls very rapidly whilst the temperature of the room is still rising considerably. This, as above shown, is conclusive evidence that there was no appreciable lag of temperature of the magnet, so that the readings of the thermometer in the damping box of the instrument may be accepted as giving the true temperature of the magnet very closely.

The quartz fibre is carried in a small brass tube, whereas the magnet itself is surrounded closely by a considerable mass of copper, and as both were equally exposed to the air during the experiments one would expect the tube and its contents to pick up the changes of temperature more quickly than the magnet and its damping box. Consequently, though the temperatures recorded by the thermometer may, and probably do, give the temperatures of the magnet throughout the experiment without appreciable error, there is primáfacie reason to expect that the temperature of the quartz fibre must have been $\frac{\text { ahead of }}{\text { behind }}$ that of the magnet according as the temperature of the room was rising $\frac{\text { falling }}{}$.

Now an examination of the charts shows that in every case the air temperature considerably exceeded that of the magnet till the process of cooling off commenced by opening the doors of the room and removing the fires. Thereafter the temperature of the magnet read higher than that of the air, the difference between the two becoming less and less, but being generally quite appreciable at the close of the experiment.

From previous considerations one woald therefore expect to find the values of the temperature co-efficient too great daring the first or heating up stage, then dropping rather suddenly, though slightly, as soon as the doors were opened, and finally rising again to its real value as the difference between the temperature of the air and the magnet gradually disappeared.*

Tables C 1 to C 10 and the diagrams show that there has been a general tendency throughout the whole series of experiments for the value of the scale co-efficient to behave in this way, except that in the majority of cases the scale value has shown no tendency to increase again towards the close of the experiment.

If any displacement of the instrument as a whole occurred as a result of the rapid temperature changes, such shift would be shown by a displacement of the base line formed by the light refletted from the small mirror attached to the base of the instrument. A careful examination of the curves shows that the amount of shift from this cause was very gradual and small in amount, in fact too small to be taken into account as its maximum amount never exceeded 0.2 scale division, i.e., 008 of an inch.
8. As above noted, tables C I to C io show that there is a general tendency for the computed

Correction for slip of fibre.

 values of the temperature co-efficient to decrease somewhat largely towards the close of each experiment. During this period the system was cooling, so that, as explained in paragraph 7 , an effect of this kind was to be expected. But the diagrams show that whereas the differences of the temperatures of the fibre and magnet were small, the drop in the temperature co-efficient was generally large and could hardly be fully accounted for in this manner.[^2]As however the drop in the tempirature coecfucient could be explained by supposing that the system under trial had given way or slipped under the strains induced by the rapid changes of temperature, it became necessary to investigate this point by comparing the records given by the two sets of magnetographs before and after each experiment.

Consequently Tables D I to D io were drawn up and they show conclusively that, except in some few cases, slip must have occurred.

The curves taken during the actual experiments when examined showed unmistakable evidence of slip only in two cases, vis., on the 20th and on the 24th January. In the first case (Fig. 3 of Plate II) the experiment has been rejected but in the second case (Fig. 1 of Plate III) as the shift occurred only at the end of the experiment an attempt has been made to correct for it. In all other cases it has been assumed that where slip did occur, it occurred gradually and uniformly and might be allowed for by distributing the amount noted uniformly according to the elapsed interval.

It may be noted that the evidence at disposal shows that in these cases (i) a certain slip has actually occurred and (2) that this slip did not manifest itself by sudden breaks in the curve : there is no evidence that the slip occurred uniformly throughout the course of an experiment, but the assumption that this was the case is not contrary to facts and seems the most reasonable one that can be made under the circumstances.

Tables $C_{4,6,8,9}$, were then corrected on this assumption and the new curves so obtained plotted alongside of the old ones.
9. The next point for consideration is what portions of the experiments are to be selected as the most trustworthy for the purposes of finding the true mean values of the temperature correction?

As regards the reading of the thermometers, small errors in reading are of consequence only in the case of the Cent. thermometers embedded in the damping boxes of the two instruments, and as the changes of temperature of these thermometers were always negligible in the space of the few seconds occupied in taking the reading, the liability to errors in the recorded temperatures may be considered equal at all stages of the experiment. Consequently the "Increment in temperature after start" as recorded in column 4 of form C i has a much greater probable percentage of error at the commencement and end of each experiment than during the intermediate period.

Errors in scaling off ordinates from the curve are greatest where the inclination of the curve to the base line is greatest, and consequently the first few measures are in each case more doubtful than the rest and the percentage of error in the figures in column 6 of form C i obviously decreases in proportion to the increase in the figures.

- On both accounts it is plain that, apart from differences of temperature between the magnet and quartz fibre which were always greatest during the first part of each experiment, this and the last portion of each experiment have much less weight than that part in which the figures in columns 4 and 6 of form C are greatest, and the curves showing the values of the derived temperature co-efficient may therefore be expected to show marked irregularities at the beginning and end of each experiment.

What is desirable is to have a long period of uniformly high temperature during which the recorded temperatures of the thermometers within and without the H.F. instrument are in very close agreement.

In practice such conditions could not be attained, for the constant stoking of the stoves necessary to maintain a high temperature produced considerable fluctuations in the recorded
temperatures and until the fires were allowed to die down the temperature of the air was always in adyance of that of the magnet.

Moreover, the copper damping box in which the magnet and its thermumeter are contained is close to the base of the instrument, which is rigidly attached to the supporting pillar by means of three stout brass footscrews leaded into recesses cut in the stone cap of the pillar. Consequently a considerable amount of heat must have been continuously conducted away and lost in the pillar which would he slow to attain the temperature of the air.

In all the curves there is a well defined critical point at which the temperature of the air coincides with that of the magnet, and it is in the neighbourhood of this point that all the desirable conditions are most nearly fulfilled.

This point is indicated in the curves by a continuous ordinate, which gives the time of its occurrence on the time scale.

That value of the temperature co-efficient found from the observations taken nearest to inis critical point seems therefore the best individual value of the series, but in order to get rid of the errors to which any single observation is liable, it has been considered advisable to derive the temperature co-efficient in each case from a series of 9 values situated symmetrically about this point. In the first four of these values the air temperature was above that of the magnet and in the last four these conditions were reversed, so that the errors arising from this cause should to a large extent cancel out in the mean.
10. Working in this way certain mean values have been obtained in each case which are grouped together in the following table for convenience of reference :-

There is very little doubt that the results for magnet 1 and fibre 2 may be confidently accepted. These are now in use in No. I Magnetograph at the Dehra Dun Observatory, where the results of the temperature readings during the first complete year of work show that the annual range in the underground room is not likely to exceed 6° or $6^{\circ} 5^{5}$ Cent.* Thus the largest multiplier that will be used in this case may be taken as $3 \cdot 3$, and as one cannot hope to read the curves with greater accuracy than 1γ, the error permissible in finding the temperature co-efficient is $\frac{1}{3 \cdot 3}=0.3 \gamma$. The accordance of the two results makes it highly probable that in this case the temperature co-efficient has been found with all desirable accuracy.

Magnet 2 and fibre 12 have been in use in No. 2 Magnetograph since September 1902 at Kodaikanal. It seems clear that the temperature co-efficient of the magnet itself altered considerably after it was repaired in January, and it is unfortunate that only one determination of the temperature co-efficient of the system was made after that date. At Kodaikanal the annual range of temperature in the underground room is not yet known, but the data available indicate that it will be less than 2° Cent. If this is the case, the greatest multiplier will be I and the error permissible in the temperature co-efficient will be i γ. So that although the single experiment made on the 3 ist January with the system as now in use at Kodaikanal is not perfectly satisfactory, it seems likely that it is sufficiently good for the very favourable temperature conditions appertaining to the observatory where it is being used.

With regard to the various experiments made with magnet 3 and fibres 3,4 and 6 , the agreement in the case of the two experiments with No. 6 tibre is good, and in the case of No. 4 fibre it is remarkable. But three out of four of these experiments have been corrected for slip and it is hardly possible therefore to trust them implicitly.

Moreover, it is disconcerting to find that the value of the temperature co-efficient when using the same magnet should vary from $12 \cdot 1$ to 12.9 when the quartz suspension is changed, for from the nature of a quartz fibre, one would expect different fibres to behave in a uniform manner under similar conditions of changing temperatures.

Whilst therefore it is likely that the results in each case with No. 3 magnet are near the truth, the mere agreement of the results derived from pairs of experiments is not sufficient to justify their acceptance as being exceedingly accurate.

An inspection of the base line values of No. 2 Magnetograph (Table B 2) from the 22nd to 25 th February inclusive, shows that magnet 3, with fibre 4, behaved fairly well when transferred to No. 2 Magnetograph during the last experiment with magnet No. 1.

However, in order to see whether fibre No. 4 was really in a stable condition and fit for use at the Barrackpore Observatory, a further prolonged comparison was made throughout March. The result is exhibited in Table D 9 and is not entirely satisfactory, for although there is no evidence of a sudden slip having occurred and the discrepancies noted may very probably be largely due to the fact that No. 2 instrument was supported merely on trestles of wood, which proved by its behaviour to be only partially seasoned, still the fact remains that the results given by the two instruments were not in close accord throughout the period.

[^3]11. In most of the experiments a deflection reading was taken to determine the scale value when the temperature of the room was approximately at its maximum. The resulting values are tabulated below :ature.

Tne accordance of the signs in the last two columns renders it unlikely that the difference in the deflection values obtained during the experiments is the result of chance. Also it will be nuted that the deflection at 120 cms . is approximately one-half of the deflection at 96 cms . and that the mean difference in the last column bears approximately the same proportion to that cierived trom the column before it.

Thus there are strong grounds for supposing that the deflections do actually increase with the temperature, that is to say, the scales value diminishes or the system becomes more sensitive.

Any rise in temperature ought (1) to increase the stiffness of the fibre, (2) to decrease the moment of the suspended magnet and (3) to decrease the moment of the deflecting magnet. On all three counts one would expect to find the deflection decrease slightly for a rise in temperature, and the fact that this is not the case indicates that some important factor has been left out of consideration.

The greatest difference in the deflections occurs during the first temperature experiment with magnet 3 and fibre 4 on the ioth February. The scale values from the special deflections taken at a temperature of $34^{\circ} 9$ Cent. are $4^{\circ} 92$ and 4.93 from the near and far distances respectively as compared with $5^{\circ} 01$ and $5^{\circ} 02$ from the mean values under ordinary conditions, so that
the change in the scale value amounts to $0 \cdot 1 \gamma$. This is sufficiently large to slightly alter the results of the temperature experiment, as the range of ordinate amounts to almost 40 scale divisions and the resulting change in force would be therefore less by about 4γ than that derived from the scale value adopted.*

There are not sufficient data to justify any attempt at correcting the results for the change in the scale value, and the above figures are chiefly of interest as showing that there appears to have been some unknown factor at work tending to make the resulting values for the temperature coeefficient slightly higher than they should be.

Statement of results accepted.
12. The following results derived from thes experiments have been accepted :-
(a) The temperature co-efficient for the system, magnet 1 and fibre 2 . . . $=12.6 y$

The experiments would lead one to accept these values as approximately correct and good enough for the desired standard of accuracy in reading the H. F. curves, but it must be said that they differ very widely from the results anticipated.

In the Kew certificate accompanying No. I set of Watson's Magnetographs it is stated that the temperature co-efficient per degree Cent. was found to be approximately $5^{\circ} 8 \gamma$ (using magnet No. I and an unknown fibre), whilst Eschenhagen gives for his somewhat similar instrument an approximate value of 7γ per degree Cent. \dagger

[^4]Hence, since the value of the scale conefficient varies directly as m ., the error introduced by assuming the temperature of the defiecting magnet to be the same as that of the room would in this case be roughly 0.4 per cent. only, whereas the avetage charge actually found exceeded one per cent.

When the deflections at high temperatures were taken, the deflecting magnet was warmed up for some time by exposing it to the sun before bringing it into the room and it is therefore most unlikely that its temperature even at the lime of taking the first deflection, was ever as much as 10° from the truth.

Consequently the change in the scale values noted at high temperatures cannot be explained by assuming a large error in the temperature of the deflecting magnet.
a $0+$ Dr. Chree, F.R.S., has offered the following explanation of the discrepancy here noted.
Let us call C_{0} the torsion couple at temperature 0° Cent. for unit angle of twist and suppose this to increase to C at some definite temperature t.

Treating for the time being the magnet's own moment as unaffected by temperature, call $A \boldsymbol{H}$ the couple exerted on it when perpendicular to the magnetic meridian at a place where H is the borizontal force.

Suppose θ_{0} the total twist of the fibre when the temperature is 0° Cent.
and θ " \quad " \quad " is t.
Thea $C_{0} \theta_{0}=C \theta=A H$ or $\theta-\theta_{0}=\frac{A H\left(C_{0}-C\right)}{C C_{0}}$
Fot a given value of $t, \frac{\left(A C_{0}-C\right)}{C C_{0}}=B$, a constant
and so $\theta-\theta_{0}=B H$
Thus the twisting accompanying a given change of temperature varies as the force at the place and since θ - θ_{0} means a given change of ordinate, the effect of a given change of temperatwre on the ordinate varies directly as H

At Dehra Dun, $H=0.335 \mathrm{C}$. G. S. approximately, whilst, at Kew $H=0.185$ approximately, so that neglecting the tem. perature co efficient of the magnet, the temperature co-efficient of the system at Dehra Dun should be $\frac{335}{185} \times 5.8=10.5 \gamma$.

If therefore the offect of temperature on the moment of the magnet is small, the results at Dehra are not incompatible with those obtained at Kew.
13. The following conclusions based on these experiments are worthy of consideration :-
(i) It is the exception to find a quartz suspension as used in these instruments which does not exhibit signs of slip even after having been in use for a considerable number of days.
(2) The increase in sensitiveness of each system for a rise in temperature is contrary to anticipation and cannot at present be explained.
(3) The method of finding the scale values by deflections at a known distance with a magnet of known moment is quite satisfactory.
h. A. Denhol.m frasker, Captain, R.E.

B 1.
Abstract of absolute observations for H. F. and computation of the value of the Base line of the H.F. Magnetograph No. I for the months of Fanuary and February 1902.
$\left\{\right.$ Selected mean temperature $=21^{\circ} 0$ cent.
$\left\{\begin{array}{l}\text { Temperature co-efficient for } 1^{\circ} \text { cent. }=12.5 y \text { throughout. }\end{array}\right.$
Magnet No. iA.
Magnetometer No. I By T. Cooke \& Sons.
Magnet i, Fibre 2.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Date.	Time of observation.	$\begin{aligned} & 8 \\ & 88 \\ & 88 \\ & 88 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$													Remarks. [The base line is evaluated from the observations taken with mag net IA in Mag netometer No. by Cooke \& Sons,]
Civil.	L. M. T.		C.G.S.			Sc. div.	γ	C.	C.	\boldsymbol{r}	\boldsymbol{r}	$\boldsymbol{\gamma}$	C. G. S.	C.G.S.	
$\begin{gathered} 4 \text { Jan. } 1903 \\ " \\ " \\ 7 \\ " \\ " \end{gathered}$	$\left\|\begin{array}{cc} \text { h. }_{2} & \text { m. } \\ 2 & 30 \\ 2 & 58 \\ 3 & 32 \\ 12 & 22 \\ 12 & 47 \\ 1 & 18 \end{array}\right\|$	$\left.\left.\begin{array}{l} v \\ \mathrm{D} \end{array}\right\}, \begin{array}{l} \mathrm{v} \end{array}\right\}$	$1004 \cdot 18$... $1004 \cdot 13$ 100450 ‥ 100429		‥ r201 $\ldots .$. $\ldots .$. 155 $\ldots .$.	$68 \cdot 2$ 69% 69.2 $68 \cdot 3$ 68.3 69%	291×2 $294 \cdot 6$ $295 \cdot 5$ $291 \cdot 6$ $291 \cdot 6$ 2946	19\%80	-1.2 -1.2 -8.2 -0.8 -0.8 -0.7	-150 -150 -150 -100 -10.0 -8.8	$276 \cdot 2$ $279 \cdot 6$ $280 \cdot 5$ $281 \cdot 6$ 281.6 $285 \cdot 8$		0.33497 \ldots. 0.33496 0.33514 \ldots 0.33507	33219 $\ldots \ldots$ 226 232 00 223	

Magnet 2, Fibre 12.

B I-contd.

Abstract of absolute observations for $H . F$. and computation of the value of the Base line of the H. F. Magnetograph No. I for the months of Fanuary and February 1902.

Magnet No. IA.
Magnetometer No. 1 By T. Cooke \& Sons.
Mainer 2, Fibre 12.

Magnt 3, Fibre 6.

Magnet 2, Fibre 12.

BI-contd.
Abstract of absolute observations for H. F. and Computation of the value of the Base line of the H. F. Magnetograph No. I for the months of fanuary and February 1902.

Magnet No. I A.
Magnetometer No. I By T. Cooke \& Sons.
Magnet 3, Fibre 3.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 \& 2 \& 3 \& 4 \& 5 \& 6 \& 7 \& 8 \& 9 \& 10 \& 11 \& 12 \& 13 \& 14 \& 15 \& 16

\hline Date. \& Time of observation. \& \& \& \& \& \& \& \& \& \& \& \& \& \& Rbmarks.

\hline Civil. \& L.M.T. \& \& C.G.S. \& \& \& Sc. div. \& \boldsymbol{r} \& C \& C \& λ \& $\boldsymbol{\gamma}$ \& γ \& C.G.S. \& C.G.S. \&

\hline 5 Feb. 1902 \& $\left|\begin{array}{cc}\text { h. } & \text { m. } \\ 13 & 26 \\ 11 & 49 \\ 12 & 14 \\ 12 & 37 \\ 1 & 1\end{array}\right|$ \& $$
\left.\begin{array}{l}
v \\
\mathrm{D}
\end{array}\right\},
$$ \& 1004×38
...
100436
$1004 \cdot 29$
100445 \& \ldots
$7 \cdot 374$
\ldots
$7 \cdot 400$

\cdots \& ..
7.529
\ldots
7.435

... \& 60.8
60.5
60.7
61.0
64.0 \& $292 \cdot 4$
291.0
292.0
$293 \cdot 4$
\ldots \& 21.39 \& +0.4
+0.4
+0.4
+0.4

+0.4 \& $$
\begin{aligned}
& +500 \\
& +500 \\
& +500 \\
& +500 \\
& +500
\end{aligned}
$$ \& 297.4

296.0
297.0
298.4

... \& $$
\left\{\begin{array}{l}
\}^{296 \cdot 7} \\
\}^{296 \cdot 5} \\
\\
\\
\\
\\
297 \cdot 7
\end{array}\right.
$$ \& \[

$$
\begin{aligned}
& .33520 \\
& .33519 \\
& .33522 \\
& .33527
\end{aligned}
$$

\] \& -33223 \& | Scale coetficient -4.81 γ |
| :--- |
| \rightarrow Mean value of Base line EO.33223. 6th February 1902. |
| Commenced slip ping at $12 \cdot 50$. |

\hline
\end{tabular}

Maget i, Fibre 2.
82

B I-concld.
Abstract of absolute observations for H. F. and Computation of the value of the Base line of the H. F. Magnetograph No. I for the months of Fanuary and February 1902.

Magnet No. i A.
Magnetometer No. I by T. Cooke $\&$ Sons.
Magnet i, Fibre 2.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Date.		Vibration of Deflection.													Remarks.
Civil.	L. M. T.		C. G.S.			Sc. div.	γ	c.	C.	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	γ	C. G. S.	C.G.S.	
${ }_{23}$ Feb. 1902 . 25 "	(12. $\begin{array}{ll}\text { h. } & \text { m } \\ 12 & 40 \\ 12 & 4 \\ 12 & 29 \\ 12 & 54 \\ 1 & 20 \\ 11 & 51 \\ 12 & 16 \\ 12 & 39 \\ 1 & 2\end{array}$	$\left.\begin{array}{l} \mathrm{v} \\ \mathrm{D} \end{array}\right\},$	$1004 \cdot 13$.. $1004 \cdot 06$ $1004 \cdot 11$ $1004 \cdot 04$ $1004 \cdot 36$ \ldots. 1003.88 $1003 \cdot 76$ $1003 \cdot 92$	$\begin{gathered} \ldots \\ 7 \cdot 530 \\ \ldots \\ 7 \cdot 349 \\ \ldots \\ \ldots \\ 7 \cdot 427 \\ \ldots \\ 7 \cdot 374 \\ \ldots \end{gathered}$	\cdots 7.295 \ldots 7.623 \ldots \ldots 7.856 \ldots 7.342 \ldots	59•1 59.0 58.3 58.0 57.1 $55 \cdot 0$ $54 \cdot 8$ 55:3 56.0 $55 \cdot 2$	$\begin{aligned} & 237.0 \\ & 236.6 \\ & 233.8 \\ & 232.6 \\ & 229.0 \\ & 220.6 \\ & 219.7 \\ & 221.8 \\ & 224.6 \\ & 221.4 \end{aligned}$	$\begin{aligned} & 21.6 \\ & 21.6 \\ & 21.6 \\ & 21.6 \\ & 21.6 \\ & 21.8 \\ & 21.8 \\ & 21.9 \\ & 22.0 \\ & 22.0 \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.6 \\ & +0.6 \\ & +0.6 \\ & +0.6 \\ & +0.8 \\ & +0.8 \\ & +0.9 \\ & +1.0 \\ & +1.0 \end{aligned}$	$\begin{aligned} & +7.5 \\ & +7.5 \\ & +7.5 \\ & +7.5 \\ & +7.5 \\ & +10.0 \\ & +100 \\ & +11.3 \\ & +12.5 \\ & +12.5 \end{aligned}$	$\left\{\begin{array}{l} 244 \cdot 5 \\ 244 \cdot 1 \\ \left\{^{241 \cdot 3}\right. \\ 240 \cdot 1 \\ 236 \cdot 5 \\ 230 \cdot 6 \\ 229 \cdot 7 \\ 233 \cdot 1 \\ 5 \end{array}\right.$		$\begin{aligned} & .33524 \\ & .33522 \\ & .33520 \\ & .33558 \\ & .33516 \\ & \\ & .33500 \\ & .33504 \\ & .33510 \end{aligned}$	280 279 279 280 258 269 260 274	2nd Experiment on 24th Febru ary 1902.
Means	...		$1004 \cdot 23$	7-403	7.510							.			

B-2.

Computation of the value of the Base Line of the H. F. Magnetograph No. 2 for the months of Fanuary and February 1902.
Magnet 2, Fibre 12. Temperature Coefft. for $\mathfrak{1}^{\circ} \mathrm{C} .=12 \cdot 5 \gamma$ throughout.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Date.	Time of observation.	Vibration or Deflection.								Correction for temperature.				Value of Base line = (14) $-(13)$.	Remarks. (The base line is evaluated from the observations taken with Magnet in in Magnetometer No. 1 by Cook \& Sons. -The figures in columns 4,5 and 6 are therefore omitted being given in Table given
Civil.	L.M.T.		C.G.S.			Sc. div.	γ	C	C	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	C.G.S.	C.G.S.	
4 Jan. 1902 .	h. m . 230 258	$\left.\begin{array}{l} v \\ D \end{array}\right\}$	\cdots	\cdots	\cdots	54.6 55.0		$\begin{aligned} & 13.5 \\ & 13.6 \end{aligned}$	000 +0.1	00 +1.3	$307 \cdot 9$ 311.5	$309: 7$	-33497	.33187	$\left\{\begin{array}{l} \text { Selected mean } \\ \text { temperature } \\ \text { Scale } \quad 3^{\circ} \cdot 5 \mathrm{C} \text { Coefit. } . \end{array}\right.$
						54-9						311.8		84	. 64
7	12 12 12 12 12	v ${ }_{\text {D }}$	\cdots	\cdots	\cdots	5500	310.2 31002	13.2	$+03$	+3.5 -3.8 2.5	31.1 306.4 3	307.1	-33514	207	Moan value of
"	1247 18							[13.3							

Maget i, Fibre 2.

B 2.-contd.
Computation of the value of the Base Line of the H. F. Magnetograph No. 2 for the months of \mathcal{F} anuary and February 1902.
Magnet i, Fibre 2. Temperature Coeff. for $\mathrm{I}^{0} \mathrm{C}=12 \cdot 5 \gamma$ throughout.

C \quad.

Reduction of temperature coefficients of H. F. Magnetographs (Watson's)
First experiment with Magnet I and Fibre 2.

C 2.
Reduction of temperature coefficients of H．F．Magnetographs（Watson＇s） First oxperiment with Magnet 2 and Fibre 12.

		Magnet 2．Fịbre 12．Inst．1．					Magnet 1.			Fibre 2.		Inst． 2.				Remarks．
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
Date．	Time．	$\begin{aligned} & \text { 巳゙ } \\ & \text { 范 } \\ & \text { D } \\ & \text { E } \\ & \text { H } \end{aligned}$		$\begin{aligned} & \text { 范 } \\ & \text { 劳 } \end{aligned}$												$\gamma=\cdot 0000$ C．G． S．Units． Sc．value of No． 1 Inst．$=5.46 \gamma$ ． Sc．value of No． 2 Inst．$=3^{\prime} 7 \mathrm{oy}$ ． Temperature co－ efficient of Mag－ net I and fibre 2 in No． 2 Inst．is taken from ex－ periment
		Cent．	Cent．	Sc． divns．	Sc． divns．	$\boldsymbol{\gamma}$	Cent．	Cent．	$\boldsymbol{\gamma}$	Sc． divns．	Sc． divns．	$\boldsymbol{\gamma}$	γ	γ	γ	vis．， $1^{\circ} \mathrm{C}=-12.7 \gamma$
15th Jan． 190	h．m．	20．50	0．00	$59 \cdot 3$	0.0	0.0	14.36	0．00	$0 \cdot 0$	$\begin{aligned} & 62 \cdot 5 \\ & 62 \cdot 5 \end{aligned}$	O．0	0.0	0．0	0.0	0.0	
＂．	845	20.74	＋0．24	58.7	－0．6	-3.3	33	－0．03	－0．4			－0	－0．4	－2．9		$7: 32$
＂．	8 －	22.44	$1 \cdot 94$	$54 \cdot 2$	$5 \cdot 1$	27.8	14.30	－0．06	－0．8	62.5	$0 \cdot 0$	O＇0	－0．8	27.0	13.9	
＂．	15	$24 \cdot 80$	$4{ }^{\circ} 30$	$48 \cdot 9$	10.4	56.8	$\cdot 28$	－ 0.08	－1．0	62.1	－0．4	－1．5	－2．5	$54 \cdot 3$	12.6	
＂．	30	27.00	6.50	43.9	15.4	84.1	14.26	－0．10	－1．3	62.0	－0．5	-1.9	-3.2	$80 \cdot 9$	12.4	
＂	45	27.70	7.20	$42 \cdot 1$	17.2	$93 \cdot 9$	${ }^{28}$	－ 0.08	－1．0	61.6	－0．9	－3．3	$-4 \cdot 3$	89.6	12.4	
＂	9	28.20	7.70	$40 \cdot 8$	18.5	101.0	14.30	－0．06	－0．8	$61 \cdot 1$	－1．4	－5．2	－6．0	95.0	12.3	
＂．	15	28.10	7.60	$40 \cdot 6$	18.7	$102 \cdot 1$	． 32	－0．04	－0．5	60.0	－2．5	－9．3	－9．8	$92 \cdot 3$	12.1	
＂．	－ 30	27.96	$7 \cdot 46$	$40 \cdot 3$	19.0	103.7	14.33	－0．03	－0．4	59.1	－3．4	－12．6	-13.0	$90^{\circ} 7$	12.2	
＂	45	28.20	770	39.0	$20 \cdot 3$	$110 \cdot 8$	$\cdot 34$	－0．02	－0．3	$58 \cdot 2$	－4．3	－15．9	-16.2	$94^{*} 6$	12.3	
＂．	$10 \quad 0$	29.05	8.55	36.8	22.5	122.9	14.35	－0．01	－0．1	57.7	－4．8	-17.8	-17.9	$105{ }^{\circ}$	12.3	
＂．	15	29.25	$8 \cdot 75$	36.2	$23 \cdot 1$	126－1	$\cdot 37$	＋0．01	＋0．1	57.7	－4．8	－17．8	－17．7	108.4	12.4	
＂．	30	29.85	$9 \cdot 35$	$35 \cdot 3$	$24 \cdot 0$	131.0	14.38	＋0．02	＋0．3	$58 \cdot 1$	－4．4	－16．3	-16.0	$115{ }^{\circ}$	12.3	
＂．	－ 45	$30 \cdot 15$	9.65	$35 \cdot 0$	$24 \cdot 3$	132.7	$\cdot 38$	＋ 0.02	＋0．3	$58 \cdot 4$	－4．1	－15．2	－14．9	1178	12.2	
＂．	110	$30 \cdot 10$	9.60	$35 \cdot 8$	$23 \cdot 5$	128.3	14.38	$+0.02$	＋0．3	59•1	－3．4	－12．6	－12．3	116°	12.1	
＂．	15	$30 \cdot 45$	9.95	$35 \cdot 1$	24.2	132.1	$\cdot 38$	＋ 0.02	＋0．3	$59 \cdot 7$	－2．8	－10．4	－10．1	$122^{\circ} \mathrm{O}$	12.3	
＂	－ 30	31.10	10.60	$33 \cdot 8$	25.5	$139 \cdot 2$	14.38	＋0．02	＋0．3	60．0	－2．5	－9．3	－9．0	$130^{\circ} 2$	12.3	
＂．	－ 45	31.25	10.75	33.6	25.7	$140 \cdot 3$	$\cdot 39$	＋0．03	＋0．4	$59 \cdot 8$	-2.7	－10．0	－9．6	$130 \cdot 7$	12.2	Deflections taken．
＂．	120	31.30	1080	$33 \cdot 4$	25.9	141.4	14.40	＋ 0.04	＋0．5	59.5	－3．0	-11.1	－10．6	130.8	12.1	
＂	15	30.98	10.48	$34 \cdot 3$	$25^{\circ} \mathrm{O}$	136.5	$\cdot 45$	＋0．09	＋1．1	59.5	$-3 \cdot 0$	－11．1	－10．0	126.5	$12^{\prime} 1$	Mean＝1I＊00 γ ．
－	－ 30	$30 \cdot 45$	9.95	35.9	23.4	127.8	14.50	＋0．14	＋1．8	$59 \cdot 9$	－2．6	－9．6	－7．8	$120^{\circ} \mathrm{O}$	12.1	Both doors slightly
＂．	${ }^{45}$	30.00	9.50	36.7	22.6	123.4	． 52	＋0．16	＋2．0	$59 \cdot 4$	$-3 \cdot 1$	－11．5	－9．5	113.9	12.0	opened．
＂	130	$29 \cdot 56$	$9 \cdot 06$	37.7	21.6	$117{ }^{\circ} 9$	14.53	＋0．17	＋2．2	$59 \cdot 3$	-3.2	－11．8	－9．6	108.3	$12^{\circ} \mathrm{O}$	Inner door opened
＂－	15	29.04	8.54	$39 \cdot 3$	20.0	109.2	． 55	＋ 0.19	＋2．4	59.7	－2．8	－10．4	－8．0	101＇2	118	wide．
＂	30	28.20	7.70 6.71	$4 \mathrm{I} \cdot \mathrm{I}$	18.2	99．4	14.58	＋ 0.22	＋2．8	$59 \cdot 3$	$-3 \cdot 2$	－ 11.8	－9．0	90.4	117	Outer door opened
＂	－ 45	27.21	6.71	$43 \cdot 1$	16.2	88.5	． 60	＋0．24	$+3 \cdot 0$	$59 \cdot 0$	－3．5	-13.0	－10．0	78.5	41.7	wide．
＂．	140	26.50	6.00	44.8	14.5	$79 \cdot 2$	14.63	＋0．27	＋3．4	59.0	$-3 \cdot 5$	-13.0	－9．6	69.6	11.6	
－	15	26.00	$5 \cdot 50$	45.8	13.5	73.7	$\cdot 68$	＋0．32	＋4．1	58.4	－4．1	-15.2	－11．1	$62^{*} 6$	114	Removed fires．
．	30	25.78	$5 \cdot 28$	46－1	13.2	$72 \cdot 1$	14.72	＋0．36	＋4．6	58.2	－4．3	－15．9	－11．3	$60 \cdot 8$	115	Removed fires．
．	－ 45	$25 \cdot 15$	$4 \cdot 65$	48.0	11.3	$6{ }^{1} 7$		＋0．40	＋5．1	58.6	$-3 \cdot 9$	－14．4	－9．3	$52^{\circ} 4$	11.3	
－	15 o	24.50	4.00	$49 \cdot 9$	$9 \cdot 4$	$51 \cdot 3$	14.80	＋0．44	＋5．6	59.0	－3．5	-13°	－7．4	$43^{\circ} 9$	11.0	
．	15	24.00	3.50	51.2	$8 \cdot 1$	$44^{\circ} 2$		＋0．50	＋6．4	$59 \cdot 3$	－3．2	－11．8	－5．4	38.8	11.1	
＂．	30	23.60	$3 \cdot 10$	$52 \cdot 0$	$7 \cdot 3$	$39^{\circ} 9$	14.92	＋0．56	＋7．1	59.5	-3.0	－ 11.1	－4．0	35.9	11.6	
＂	${ }_{16} 45$	23.30	2.80	$52 \cdot 9$	6.4	$34^{\circ} 9$		＋0．60	＋7．6	59.4	-3.1	－11．5	-3.9	$31^{\prime} 0$	11.1	
＂	160	23.00	2.50	$53 \cdot 5$	$5 \cdot 8$	$31^{\prime} 7$	15.00	＋ 0.64	＋8．1	59.5	-3.0	－11．I	-3.0	28.7	115	

C 3.
Reduction of temperature coeficient of H. F. Magnetographs (Watson's) Second experiment with Magnet 2 and Fibre 12.

C 4 a.

Table showing results of Temperature Experiment No. I with Magnet 3 and Fibre 6 corrected for slip.

C 5

Reduction of temperature coefficient of H. F. Magnetograph (Watson's) Second Experiment with Magnet 3 and Fibre 6.

C 6.

Reduction of temperature coefficient of H. F. Magnetograph (Watson's). Third experiment with Magnet a ana Fibre 12.

C 6 .

Table showing results of Temperature Experiment No. 3 with Magnet 2 and Fibre 12 corrected for slip.

1	2	3	4	5	6	7	
Date.	Time.	Increment in temperature after start.	Actual change in ordinate due to change in temperature.	Correction for slip.	True change in ordinate due to change in temperature.	Temperature coefficient for I° Cent $=6$ +3 .	Remaris.
Civil.	L. M. T.	C	γ	\boldsymbol{y}	$\boldsymbol{\gamma}$	γ	
3rst Jan. 1902	7.52 80 15 30 45 $9^{\circ} 0$ 15 30 45 $100^{\circ} 0$ 15 30 45 110 19 30 45 12.0 15 30 45 130 15 30 45 140 15		$\begin{array}{r} 0^{\circ} 0 \\ -2^{\circ} 4 \\ 19^{\circ} 9 \\ 70^{\circ} 0 \\ 112^{\circ} 2 \\ 14^{\circ} 0 \\ 155^{\circ} 1 \\ 165^{\circ} 7 \\ 174^{\circ} 4 \\ 187^{\circ} \\ 189^{\circ} 9 \\ 11^{\circ} 7 \\ 203^{\circ} 1 \\ 1966^{\circ} \\ 185^{\circ} 1 \\ 185^{\circ} 5 \\ 181^{\circ} 8 \\ 173^{\circ} 7 \\ 153^{\circ} 1 \\ 132^{\circ} 7 \\ 119^{\circ} 7 \\ 98^{\circ} 3 \\ 85^{\circ} 5 \\ 73^{\circ} 6 \\ 65^{\circ} 1 \\ 59^{\circ} 5 \\ 55^{\circ} \\ 5^{\circ} 6 \\ 49^{\circ} 7 \\ 47^{\circ} 3 \\ 45^{\circ} 8 \\ \hline 8 \end{array}$	0.0 0.0 -0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3 3.7 4.0 4.3 4.6 4.9 5.2 5.5 5.8 6.1 6.4 6.7 7.0 7.3 7.6 7.9 8.2 8.5 8.8 9.1		$-15{ }^{\circ} 9$ 16.8 $13^{\circ} 2$ 12.8 $13^{\circ} 0$ $13^{1} 1$ 12.9 12.9 12.9 12.8 129 $12 \cdot 9$ 12.7 12.6 $12{ }^{\circ} 7$ 12.6 12.5 $12 \cdot 3$ 12.5 12.1 12.4 12.4 12.5 12.2 12.4 12.7 12.8 130 $13^{\circ} 2$ $13^{\circ} 0$ $13^{\circ} 0$ $13^{\circ} 7$	Columns 1, 2, 3 and 4 are copied from columns 1,2,4 and 15 of the temperature experiment. The total slip measured from 7.50 to 16.0 is $10 y$ and this has been distributed uninformly throughout. Mean 12'60 $\mathbf{\gamma}$.

C． 7.

Reduction of temperature coefficient of Horisontal Force Magnetograph（Watson＇s）．
First Experiment with Magnet 3 and Fibre 3.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \& \multicolumn{5}{|l|}{Magnet 3．Fibre 3．Inst． \(\mathrm{s}^{\text {a }}\)} \& \multicolumn{3}{|c|}{Magnet i．} \& \multicolumn{2}{|l|}{Fibre 2.} \& \multicolumn{2}{|l|}{Inst． 2.} \& \multirow[b]{2}{*}{15} \& \multirow[b]{2}{*}{16} \& \multirow[b]{2}{*}{Remarks．} \\
\hline 1 \& 2 \& 3 \& 4 \& 5 \& 6 \& 7 \& 8 \& 9 \& 10 \& 11 \& 12 \& 13 \& 14 \& \& \& \\
\hline \multirow[t]{2}{*}{Date．} \& Time． \& \& \begin{tabular}{l}
 \\

\end{tabular} \& \[
\begin{aligned}
\& \text { 品 } \\
\& \text { 呂 }
\end{aligned}
\] \& \& \& \& \& \& \& \& \& \& \& \& \begin{tabular}{l}
\(Y=.00001\) C．G．S． Units． \\
Scale coefficient of No． 1 Instrument \(=4^{81} \gamma\) ． \\
Scale coefficient of No． 2 Instrument \(=3.7^{1} \gamma\) ． \\
Temperature co－ efficient of No． 2
\end{tabular} \\
\hline \& h．m． \& Cent． \& Cent． \& Sc． Divn． \& Sc． divn． \& \(\boldsymbol{\gamma}\) \& Cent． \& Cent． \& \(\boldsymbol{\gamma}\) \& S．C． divn． \& S．C． diva． \& \(\boldsymbol{\gamma}\) \& \(\boldsymbol{\gamma}\) \& \(\boldsymbol{\gamma}\) \& \(\boldsymbol{\gamma}\) \& Temperature co－ efficient of No． 2 instrument taken \(=\) \(-12.7 \gamma\) ． \\
\hline 6th Feby． 1902 \& 7－4 \& 21.05 \& 0.00 \& 750 \& 00 \& 0.0 \& 14.75 \& 0，00 \& 00 \& 64．3 \& 0.0 \& 0.0 \& 000 \& 000 \& \(\cdots\) \& Fires lighted． \\
\hline \& 8－0 \& 21.29 \& ＋0．24 \& 74.3 \& －0．7 \& －3．4 \& 14.74 \& －0．01 \& －0．1 \& 64.4 \& ＋0．1 \& ＋0．4 \& ＋0．3 \& \(-3.7\) \& \(-15.4\) \& \\
\hline ＂ \& 15 \& 22.80 \& 2.75 \& 70.0 \& 5.0 \& 24.1 \& ． 73 \& －0．02 \& －0．3 \& 65.1 \& ＋0．8 \& ＋3．0 \& +2.7
+2.7 \& 26.8 \& 15.3 \& \\
\hline \(\cdots \quad \cdot\) \& 30 \& 26.60 \& \(5 \cdot 55\) \& 59.5 \& 15.5 \& 74.6 \& 14.72 \& －0．03 \& －0．4 \& 65.0 \& ＋0．7 \& ＋2．6 \& ＋2．2 \& 76.8 \& 13.8 \& \\
\hline \& 9－0 \& \(29 \cdot 50\)
\(30-63\) \& 8.45
0.58 \& 52.3
40.0 \& 22.7
26.0 \& \(109 \cdot 2\)
125.1 \& .73
14.74 \& －0．02 \& －0．3 \& 64.7
6.3 \& ＋0．4 \& ＋1．5 \& +1.2
+0.1 \& 110.4
1250.0 \& 13.1
13.0 \& \\
\hline \(\cdots \quad \cdot\) \& 9－0 \& 退 \(30-63\) \& 9.58
10.75 \& 49－0 \& 26.0
20.1 \& 125.1
1400 \& 14.74
.75 \& －0．01 \& -0.1
0.0 \& 64.3
64.1 \& 0.0
-0.2 \& －0．0 \& －0．1 \& \(125 \cdot 0\)
139.3 \& 13.0
13.0 \& \\
\hline － \& 15
30 \& ［ 38.80 \& 10.75
12.45 \& \(45 \cdot 9\)
42.8 \& 29.1
32.9

3 \& 1400
158.2 \& .75
14.76 \& 0.00
+0.01
+0.01 \& 0.0
+0.1 \& 64.1
63.9 \& －0．2 \& －0．7 \& －0．7 \& 139.3
156.8
15.8 \& 13.0
12.6 \&

\hline ＂ \& 30 \& 33．50 \& 12.45
12.75 \& $42 \cdot 8$
39.8 \& 32.1
35.2 \& 158.2

169.3 \& | 14.76 |
| :---: |
| .76 | \& +0.01

+0.01 \& +0.1
+0.1 \& 63.9
63.0 \& －0．4 \& －1．5 \& -1.4
-4.7 \& 156.8
164.6 \& 12.6
12.9 \&

\hline ＂ \& 10－0 \& 34．10 \& 13.05 \& 38.9 \& 36.1 \& 1736 \& 14.76 \& ＋0．01 \& ＋0．1 \& 62.9 \& －1．4 \& -5.2 \& －5．1 \& 168.5 \& 12.9 \& $)$ Lact fuel added．

\hline \cdots－ \& 15 \& 34.25 \& 13.20 \& 38.0 \& 370 \& 178.0 \& ． 76 \& ＋0．01 \& ＋0．1 \& 62.4 \& －1－9 \& －70 \& －6．9 \& 171．1 \& 13.0 \& Deflection

\hline ＞－ \& 30 \& 34．56 \& 13.51 \& 37.5 \& 37.5 \& 180．4 \& 14．76 \& ＋0．01 \& ＋0．1 \& 62.8 \& －1．5 \& －5．6 \& －5．5 \& 174.9 \& 12.9 \& taken．

\hline ＂ \& 45 \& 35.18 \& 14.13 \& 35.8 \& 39.2 \& 188.6 \& －77 \& ＋0．02 \& ＋0．3 \& 62.7 \& －1．6 \& －5．9 \& －5．6 \& 183.0 \& 13.0 \&

\hline ＂ \& 11－0 \& $35 \cdot 40$ \& 14.35 \& 35－1 \& 39－9 \& 191.9 \& 14.78 \& $+0.03$ \& ＋0．4 \& 62.8 \& -1.5 \& －5．6 \& －5．2 \& 186.7 \& 130 \&

\hline ＂ \& 15 \& $34 \cdot 78$ \& 13.73 \& 37－1 \& $37 \cdot 9$ \& 182．3 \& $\cdot 78$ \& ＋0．03 \& ＋0．4 \& 62.8 \& －1．5 \& －56 \& $-5 \cdot 2$ \& 177．1 \& 12.9 \& Mean 12.90 y

\hline ＂ \& 30 \& 33.84 \& 12.79 \& $39 \cdot 8$ \& $35 \cdot 2$ \& $160 \cdot 3$ \& 14.78 \& ＋0．03 \& ＋0．4 \& 62.8 \& －1．5 \& －56 \& $-5 \cdot 2$ \& 164．1 \& 12.8 \& Both doors half

\hline ＂ \& 45 \& 32.86 \& 11.81 \& $42 \cdot 5$ \& 32．5 \& 156.3 \& $\cdot 79$ \& ＋0．04 \& ＋0．5 \& 62．8 \& －1．5 \& －5．6 \& $-5 \cdot 1$ \& 151．2 \& 12.8 \& Both doors opened

\hline ＊• \& 12－0 \& 31.96 \& 10.71 \& 46.2 \& 28.8 \& 138.5 \& 80 \& ＋0．05 \& ＋0－6 \& 63.8 \& －0．5 \& －1．9 \& －1．3 \& $137 \cdot 2$ \& 12.8 \&

\hline ＂－ \& 15 \& Omit－ ted． \& \cdots \& 50．6 \& 24.4 \& 117.4 \& 14.82 \& ＋0．07 \& ＋0．9 \& 64．1 \& －0．2 \& －0．7 \& ＋0．2 \& 117.6 \& ．．． \& Fires removed．

\hline ＂• \& \& 2890 \& 7.85 \& 53.4 \& 21.6 \& \& ． 87 \& ＋0．12 \& ＋1．5 \& 63.8 \& －0．5 \& －1．9 \& －0．4 \& 113.5 \& \& －．

\hline ＂ \& 45 \& 26.60 \& $5 \cdot 55$ \& 57.4 \& 176 \& 84.7 \& 14.92 \& ＋0．17 \& ＋2．2 \& 63.9 \& －0．4 \& －1．5 \& ＋0．7 \& $85 \cdot 4$ \& 15.4 \&

\hline ＂ \& $$
1300
$$ \& 26.45 \& $5 \cdot 40$ \& 60.0 \& 15.0 \& 72.2 \& 14．94 \& ＋0．19 \& ＋8．4 \& 63.8 \& －0．5 \& －1．9 \& ＋0．5 \& 72.7 \& 13.5 \&

\hline n \& 15 \& 25.70 \& 4.65 \& 62.3 \& 12.7 \& 61.1 \& ． 97 \& ＋0．22 \& ＋2．8 \& 63.7 \& －0．6 \& -2.2 \& ＋0．6 \& 61.7 \& 13.3 \&

\hline ＂－ \& 30 \& 25.10 \& 4.05 \& 63.5 \& 12.5 \& $55 \cdot 3$ \& 15.00 \& ＋0．25 \& ＋3．2 \& 63.3 \& -1.0 \& －3．7 \& －0．5 \& 54.8 \& 13.5 \&

\hline ＂ \& 45 \& 24.50 \& 3.45 \& ${ }^{64} 4$ \& 10.2 \& 49.1 \& ． 04 \& ＋0．29 \& ＋3．7 \& 63.1 \& －1．2 \& －4．5 \& －0．8 \& 48.3 \& 14.0 \&

\hline ＂－ \& $14^{\circ} 0$ \& 24.25 \& 3.20 \& $$
66.0
$$ \& $9 \cdot 0$ \& $43 \cdot 3$ \& ． 08 \& ＋0．33 \& ＋4．2 \& 63.6 \& －0．7 \& －26 \& ＋16 \& $44 \cdot 9$ \& 140 \&

\hline ＂ \& 15 \& 23.85 \& 2.80 \& $$
66-9
$$ \& 8.1 \& 39.0 \& 15.12 \& ＋0．37 \& ＋4．7 \& 63.4 \& －0．9 \& －3．3 \& ＋1．4 \& 40.4 \& 14.4 \&

\hline ＂－ \& 30 \& 23.55 \& 2.50 \& $$
67 \cdot 5
$$ \& 7.5 \& 36.1

3 \& $\cdot 16$ \& ＋0．41 \& ＋5．2 \& 63.4 \& －0－9 \& －3．3 \& ＋1．9 \& 3850 \& 15.2
15 \&

\hline ＂－ \& ${ }_{15} 45$ \& 23.35 \& 2.30

2.15 \& $$
68.1
$$ \& 6.9

6.6 \& $33 \cdot 2$
31.7 \& ． 20 \& +0.45
+0.49 \& +5.7
+6.2 \& 63.4
6.4 \& －0．9 \& －3．3 \& +2.4
+2.5 \& 35.6 \& 15.5 \&

\hline $\infty \quad$. \& 15－0 \& 23.20 \& 2.15 \& 68.4 \& 6.6 \& 31.7 \& ． 24 \& ＋0．49 \& ＋6．2 \& 63.3 \& -1.0 \& －3．7 \& ＋2．5 \& 34.2 \& $15 \cdot 9$ \&

\hline ＂• \& 15 \& 23.10 \& 2.05 \& 69－0 \& 6.0 \& 28－9 \& $15 \cdot 28$ \& ＋0．53 \& ＋6．7 \& 63.6 \& －0．7 \& －2．6 \& ＋4．1 \& 33.0 \& 16.1 \&

\hline ＂\quad－ \& 30 \& 22.95 \& 1.90 \& 69.5 \& $5 \cdot 5$ \& 26.5 \& ． 32 \& ＋0．57 \& ＋7．2 \& 63.7 \& －0．6 \& －2．2 \& ＋5．0 \& 31.5 \& 16.6 \&

\hline ＂ \& ． 45 \& 22.90 \& 2.85 \& $$
69.7
$$ \& $5 \cdot 3$ \& 25.5 \& $15 \cdot 36$ \& ＋0．61 \& ＋7．7 \& 63.7 \& －0．6 \& －2．2 \& ＋5．5 \& 31.0 \& 16.8 \&

\hline ＂ \& \& 22.75 \& 1.70 \& $$
70.4
$$ \& 46 \& 22.1 \& 15.40 \& ＋0．65 \& ＋8．3 \& 6.42 \& －0．1 \& －0．4 \& ＋7．9 \& 30.0 \& \&

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline
\end{tabular}

Reduction of temperature coefficient of Horizontal Force Magnetograph (Watson's).
First experiment with Magnet 3 and Fibre 4.

C 8 .
Table showing results of Temperature Experiment No. 1 with Magnet 3 and Fibre 4 corrected for slip.

C. 9.

Reduction of temperature coefficient of Horisontal Force Magnetograph (Watson's). Second experiment with Magnet 3 and Fibre 4.

	Magnet 3. Fibrr 4. Inst. I.						Magnet 1.			Fibre 2.		Inst. 2.				Remarks.	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16		
Date.	Time															$\begin{aligned} & \text { Y =.0000I C. G. S. } \\ & \text { Units. } \\ & \text { Scale value of No. } 1 \\ & \text { instrument }=5.02 \mathrm{Y} . \\ & \text { Scale value of No. } 2 \\ & \text { instrument }=3.71 \mathrm{y} . \\ & \text { Temperature co- } \\ & \text { efficient of No. } 2 \end{aligned}$	
	h. m.	Cent.	Cent.	divns.	Sc. divns.	γ	Cent.	Cent.	$\boldsymbol{\gamma}$	Sc. divns.	Sc. divns.	$\boldsymbol{\gamma}$	γ	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	$=-12.7 \%$.	
12th Feb. 1 çoz	$7-28$45	$\begin{aligned} & 20.05 \\ & 20.70 \end{aligned}$	0.00+0.65	$\begin{aligned} & 70 \cdot 7 \\ & 69 \cdot 4 \end{aligned}$	0.0	0.0-6.5	$\begin{array}{r} 15.37 \\ .37 \end{array}$	0.000.00		63.564.6	0.0+1.1	0.0$+\quad 4.1$	0.0$+\quad 4.1$	0.0-106	-16.3	Fires lighted at 7-30.	
8-0					-1.3												
			24.50	$4 \cdot 45$	57.0	13.7	68.8	$15 \cdot 38$	+0.01	+0.1	65.2	+1.7	+6.3	+6.4	$75 \cdot 2$	16.9	
" -	15	28.40	8.35	$47 \cdot 5$	$23 \cdot 2$	116.5	. 34	-0.03	-0.4	65.7	+2.2	+8.2	+ 7.8	124.3	149		
"	30	30.70	10.65	43.7	27.0	135.5	15.30	-0.07	- 0.9	65.5	+2.0	+ 7.4	+6.5	1420	$13 \cdot 3$		
" .	45		12.15	39.7	31.0	155.6	-30	-0.07	- 0.9	65°	$+1.5$	+ 5.6	+ 4.7	160.3	13.2		
"			13.55	$35 \cdot 3$	$35 \cdot 4$	$177 \cdot 7$	15.30	-0.07	- 0.9	64.9	+1.4	+ 5.2	+4.3	182.0	13.4		
"	$9-0$ 15	35.00	14.95	$32 \cdot 9$	37.8	189.8	$\cdot 33$	-0.04	-0.5	64.5	$+10$	+ 3.7	+ 3.2	193.0	12.9		
"	30	35-10	15.05	33.1	37.6	188.8	15.36	-0.01	- 0.1	$64 \cdot 3$	+0.8	+3.0	+ 2.9	191.7	12.7		
",	4510.0	$\begin{aligned} & 35.20 \\ & 35.30 \end{aligned}$	15.15	$32 \cdot 4$	$38 \cdot 3$	192.3	-35	-0.02	- 0.3	64.2	+0.7	+ 26	+ 2.3	194.6	12.8		
" •			15.25	31.9	38.8	194.8	15.35	-0.02	- 0.3	63.6	+0.1	+ 0.4	+ 0.1	194.9	12.8		
"	10.0 15	$\begin{aligned} & 35 \cdot 30 \\ & 35 \cdot 40 \end{aligned}$	15.35	31.8	38.9	$195 \cdot 3$	$\cdot 36$	-0.01	- 0.1	63.7	$+0.2$	+ 0.7	+ 0.6	195.9	12.8		
"	$\begin{aligned} & 30 \\ & 45 \end{aligned}$	36.00	15.95	$30 \cdot 1$	40.6	203.8	$\begin{array}{r}\text {-37 } \\ \hline 15.38\end{array}$	0.00 +0.01	+0.0	63.8 63.2	$+0.3$	\pm1.1 1.1	+1.1 1.0	2049 211.3	12.8 12.8		
"		36.60	16.55	28.4	$42 \cdot 3$	212.3	15.38	+0.01	+ 0.1	63.2 64.0	-0.3	- 1.1	+1.0 $+\quad 20$	211.3 212.5	12.8 12.6		
",	$\begin{array}{r} 45 \\ 11-0 \end{array}$	36.85	16.80	28.8	41.9	$210 \cdot 3$	-39	+0.02 +0.03 +0.05	± 0.3	64.0	+0.5 +0.5	+ +1.9 +1.9 +	$+\quad 2.2$ $+\quad 2.3$	$212 \cdot 5$ 201.6	12.6 12.5	Defiection tal	
" ${ }^{\prime}$	17	36.16	16.11	31.0	$39 \cdot 7$	199.3	$15 \cdot 42$	+0.05	+ + + + +	64.0	$+0.5$	+ 1.9	+ 2.5	194.8	12.5		
"	$\begin{array}{r} 30 \\ 45 \end{array}$	$\begin{aligned} & 35 \cdot 60 \\ & 35.78 \end{aligned}$	15.73	32-1	38.6	193.8	$\cdot 15$	+0.08	$+1.0$	$6+3$	+0.8	$+3.0$	+ 4.0	197.8	12.6		
" .	$\begin{array}{r} 45 \\ 12-0 \end{array}$	$\left\lvert\, \begin{array}{l\|l\|} 35.78 \\ 35.50 \end{array}\right.$	15.45	33.9	36.8	184.7	15.48	+0.11	+ 1.4	65.1	+16	+ $5 \cdot 9$	+ $7 \cdot 3$	192.0	12.4	Both doors opened	
"	15	$34 \cdot 40$	14.35	37.6	33.1	166.2	$\cdot 50$	+0.13	+ 1.7	65.1	$+16$	+ 5.9	+ 7.6	173.8	12.1	Both doors opened	
"	$\begin{aligned} & 30 \\ & 45 \end{aligned}$	32.70	12.65	42.1	28.6	143.6	$\cdot 52$	+0.15	+ 1.9	65.1	+ 1.6	+ 5.9	+ 78	151.4	120	Fires removed.	
"		32.70 31.60	11.55	45.1	25.6	128.5	.55	+0.18	+ 2.3	64.0	+0.5	+ 1.9	+ 4.2	132.7	11.5		
,	$\begin{array}{r} 45 \\ 13-0 \\ 15 \end{array}$	29.8028.40	9.75	$49 \cdot 2$	21.5	107.9	15.58	+0.21	+ 2.7	63.1	-0.4	- 1.5	+1.2	109.1	11.2		
"			8.35	52.7	18.0	90.4	. 62	+0.25	+ 3.2	63.3	-0.2	- 0.7	+ 2.5	92.9	11.1		
"	30	27.50	$7 \cdot 45$	54.7	16.0	$80 \cdot 3$	15-67	+0.30	+ 3.8	63.0	-0.5	- 1.9	+ 1.9	82.2	11.0		
"	45140	26.70	6.65	56.0	14.7	73.8	$\cdot 71$	+0.34	+ 4 +3	62.1	-1.4	- 5.2	- 0.9	72.9	11.0		
" •		26.25	6.20	57.0	13.7	68.8	${ }^{-75}$	+0.38	+ 4.8	61.9	-1.6	- 5.9	- 1.1	67.7	10.9		
" .	15	25.30	$5 \cdot 25$	57.5	13.2	66.3	15.80	$\rightarrow 0.43$	+ 5.5	61.0	-2.5	-9.3	- 3.8	62.5	11.9		
" •	3045	$\xrightarrow{25 \cdot 30} \mathbf{2 5 . 2 6}$	5.25	$57 \cdot 6$	13.1	65.8	15.84	+0.47	+6.0	60.0	-3.5	- 13.3	-7.0	58	11.2 10.7		
" -			5.21	58.3	12.4	62.2	. 88	+0.51	+6.5	60.0	-3.5	-13.3	-6.5	55.7	10.7		
" •	150	$\left\|\begin{array}{l} 25.05 \\ 24.95 \end{array}\right\|$	5.00	59.0	11.7	58.7	15.93	+0.56	+7.1	60.1	-3.4	-12.2	- 5.5	53.2	10.6		
"	$\begin{aligned} & 15 \\ & 30 \end{aligned}$		4.90	59.4	11.3	56.7	. 98	+0.61	+ 7.7	59.9	-3.6	-13.3	- 5.7	51.0	10.4		
"		$\begin{aligned} & 24 \cdot 95 \\ & 24.70 \end{aligned}$	$4 \cdot 65$	59-7	110	55.2	16.03	+0.66	+8.4	59.3	-4.2	-15.6	-7.2	48\%	10.3		
"	$\begin{array}{r} 45 \\ 16-0 \\ 15 \end{array}$	$\begin{array}{l\|l} 24 \cdot 50 & 4 \cdot 45 \\ \text { Omitt } & \\ 24.40 & 4 \cdot 35 \end{array}$		59.3	11.4	57.2	-10	+0.73	+ 9.3	58.4	-5.1	-18.9	- 9.6	$47 \cdot 6$	10.7		
"					11.7		16.17	+0.80	+10.2	58.0	$-5 \cdot 5$	-20.4	-10.2				
"				59.0	11.7	58.7											

C 9 a.
Table showing results of Temperature Experiment No. 2 with Magnet 3 and Fibre 4 corrected for slip.

Reduction of Temperature coefficient of H. F. Magnetograph (Watson's). Second experiment with Magnet 1 and Fibre 2.

APPENDIX.

Abstract of deductions made from the Tables of comparisons of the two Magnetographs, and the base line values found for each.

The H. F. Magnet is constrained by the torsion in the fibre to lie with its North end East and the recording arrangement is such that an increase of H. F. corresponds to an increase of ordinate.

If the fibre slips or gives way under the strain, the ordinates will increase; consequently a sudden increase of ordinate not common to both instruments presumably denotes a slip in that one in which the increase occurred. Hence also as the last column of the tables of comparisons gives the quantity Instrument 1-Instrument 2, an increase in the values in this column shows that a slip has occurred in No. I instrument, whereas a decrease would show that a slip had occurred in No. 2 instrument.

Now an examination of the base line values of No. 2 instrument and of the comparative tables shows that no great slip occurred at any time in No. 2 instrument. Between the 13 th January and 19th February there is a decrease in the base line value from 3322 I to 33270 , and this probably represents pretty closely the slip or settlement that occurred in fibre No. 2 during that period. The deflections obtained during the above period show that there has been no marked change in the moment of the suspended magnet and any decrease in the m $\imath m e n t$ would make the ordinates also decrease and thus increase the base line value. An examination of the curves shows a sudden deciease of ordinates at 1530 on the 27th January amounting to $15 y$ and a sudden increase at $15{ }^{\circ} 0$ on 31st January amounting to about 4 r . No certain explanation can be given of these changes the first of which, it may be noted, is in a contrary direction to that of a slip, but it is probable that they were due to an actual deflection caused by the approach of some magnetic substance thereafter left in position. The base lines at these points are unchanged and no general shift of the instrument can therefore have occurred. Consequently there is strong evidence for accepting the changes given by No. 2 instrument as showing the real changes that occurred during any short period such as that occupied by an entire temperature experiment.

All the temperature experiments were made with No. I instrument.
The two experiments with magnet 1 and fibre 2 were made on the 6th January and 24th February and an examination of comparative tables Nos. Di and D8 shows that on both occasions not only were both instruments in accord before and after the experiments but also that there is no evidence of slip during the experiment itself.

These two experiments seem therefore quite satisfactory, and the results are in close accord.
Magnet 2 and fibre 12 were tried on the 15 th and 20th January and the first experiment seems satisfactory but the second must be rejected as there is unmistakable evidence of sudden shifting having occurred during its progress. Shortly afterwards it was broken and after repairs, was again tested on the 3 ist January and the experiment on that date is moderately satisfactory. Such slip as occurred in the course of it was probably gradual as the curve is smooth throughout and a correction has therefore been applied on the assumption that this was the case.

Magnet 3 was tried with three different fibres, vis., Nos. 6, 3 and 4. The first trial with fibre 3 on the 23rd January is unsatisfactory as slip undoubtedly occurred, but as the curve is smooth except where a well marked jump occurred towards the end of the experiment, an attempt has been made to correet the results by distributing the slip on the assumption that it was uniform up to this jump.

The second experiment on the 28th seems quite satisfactory.
Fibre 3 behaved very badly at first but seems to have steadied down before the experiment was made on the 6th February and there seems no reason why the result should be rejected.

The pair of experiments with fibre 4 were made on the roth and 12 th February and by correcting the results on the assumption of uniformity of slip, a close approximation to the truth has probably been obtained. The carves are smooth throughout and table 7 shows that the fibre was slipping steadily with a small but fairly uniform rate throughout the whole period during which it was suspended in No. I instrument. Subsequently when tried in No. 2 instrument the fibre seems to have behaved fairly well.

D 1.

Comparison of Magnetographs Nos. I and 2 during the Temperature Experiments.

During the above comparison the arrangement was-
No. 1 Inst. Magnet 1. Fibre 2.
" 2 " \quad 2. 12.
It appears that the instruments gave fairly accordant results throughout and that there was no change in No. I instiument after the tomperature experiment on 6th January.

D 2.
Comparison of Magnetographs Nos. I and 2 during the Temperature Experiments.

		Magnetograph No. I. Scale coefficient $=5.46 Y$. Mean value of Base line $=-33208$. Selected mean temperature $=21^{\circ}$ O Cent. Temperature coefficient $=12.5 \mathrm{Y}$.							Magnetograph No. 2. Scale coefficient $=3.70 \gamma$ - Mean value of Base line $=.33297$. Selected mean temperature $=1.5^{\circ} \circ$ Cent. Temperature $\mathbf{c o - e f f i c i e n t}=\mathbf{1 2 . 5 \gamma}$.							1st and 2nd Experiments with Magnet 2 and Fibre 12.	
Date.	Hour.	$\begin{aligned} & \text { s } \\ & \text { B } \\ & \text { 느́ } \\ & \text { 曷 } \end{aligned}$										哭					Remarks.
Civil.	$\begin{gathered} \text { L.M. } \\ \text { T. } \end{gathered}$	C.	C.	$\boldsymbol{\gamma}$	Sc. divn.	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	C.G.S.	C.	C.	$\boldsymbol{\gamma}$	Sc. divn.	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	C.G.S.	$\boldsymbol{\gamma}$	
13th Jan. \$902	16-0	20.4	-06	$-7 \cdot 5$	57.5	3140	$306 \cdot 5$. 33515	14.7	-0.3	-3.8	57.8	213.9	210.1	-33507	+8	The temperatures given were
14th "	11-10	20.4	-0.6	-7.5	59.8	$326 \cdot 5$	31900	527	14.2	-0.8	-10.0	63.1	233.5	223.5	521	+6	
"	1500	20.4	-0.6	-7.5	58.3	318.3	310.8	519	14.7	-0.3	-3.8	59.2	219-0	$215 \cdot 2$	512	+7	
15th n	7-30	20.5	-0.5	-6.3	59.0	322.1	315*8	524	14.4	-0.6	-7.5	62.1	229.8	$222 \cdot 3$	519	+5	ist temperature
"	1600	23.0	+2.0	+25.0	53-1	289-9	314.9	523	15\%	00	-0.0	59.2	219.0	219.0	516	+ 7	
16th \quad	10-30	21.1	-0.1	-1.3	49\%	267.5	$266 \cdot 2$	474	$14 \cdot 2$	-0.8	-10.0	5000	185*0	$175 \cdot 0$	472	$+2$	
18th "	11-20	20.4	-0.6	-7.5	53.1	289.9	$282 \cdot 4$	490	13.7	-1.3	-16.3	57.2	211.6	$195 \cdot 3$	492	-2	
"	13-45	$20 \cdot 4$	-0.6	-7.5	$52 \cdot 3$	$285 \cdot 6$	278.1	486	14.1	-0.9	-11.3	54.7	$202 \cdot 4$	191.1	488	-2	
19th "	10-20	20.7	-0.3	-3.8	51-9	283.4	279-6	488	13.9	-1.1	-13.8	56.2	$207 \cdot 9$	194.1	491	-3	
"	$13 \cdot 0$	20.7	-0.3	-3.8	53.1	289-9	286.1	494	14.0	-1.0	-12.5	56.7	209.8	$197 \cdot 3$	494	0	
20th "	7-30	20.6	-0.4	-5.0	55.8	304.7	299.7	508	140	-1.0	-12.5	61.2	226.4	213.9	511	-3	
"	16-0	22.9	+1.9	+23.8	51.0	$278 \cdot 5$	$302 \cdot 3$	510	14.7	-0.3	-3.8	57.3	21200	208.2	505	+5	

During the above comparison the arrangement wasm
No. I lnst. Magnet 2. Fibre 12.
" 2 " 1.
There is nothing in the above figures to show that any serious shift occurred in either instrument during the first experiment with Magnet 2 and Fibre 12. In the and experiment the Fibre seems to have slipped to the exteot of 8 C.G.S. urits and an iaspection of the curve shows several sharp jumps. The and experiment must therefore be rejected.

D 3.
Comparison of Magnetographs Nos. I and 2 during the Temperature Experime,ts.

During the above comparison the arrangement was-
No. 1 Inst. Magnet 3 Fibre 6.
No. 2 " 2 .
There is ovidence" that Fibre" began slipping as soon as erected on 22nd January and seems to have slipped uniformly up till the conclusion of the ist experiment on 23td. From 4 P.M. on that date it seems to have remained steady till about 8 A.m. on 27th. During the mext 12 hours, i.e., till 8 P. M. on 27 th a gradual slip, amounting to about ${ }_{5} \mathrm{~S}$. G. S. units took place. But during the 28 th and up till the time of removal on 29th there is no evidence of any further appreciable slip having occ urred. Consequently it would seem that the second temperature experiment may be accepted with confidence. The gradual slip from 8 A.M. to 8 P.M. on 27 th is inveatigated on the next sheet from which the above deduction is drawn.

D 4.

Comparison of Magnetographs Nos. I and 2 during the Temperature Experiments.

This tabulation was made to account for and show the nature of the divergence which occurred in the results given by the two instruments tetween $1-15$ P.M. on 26th January 1902 and $7-40$ A.M. on 28th January 1902, as shown in Table D3.

The figures indicate that there was no appreciable difference between the instruments up till 9 A.m. on 27 th. From that hour till δ p.a a gradual shift of one of the instruments relatively to the other seems to have taken place. After 8 P. M. on 27 th till the system in No. in instrument was changed on 29th, no appreciable change has occurred. The investigation is complicated by the sudden shift which occurred in No. 2 ment was changed on 29th, no appreciable change has occurred. The investigation is complicated by the sudden shift which occurre

D 5.

Comparison of Magnetographs Nos. I and 2 during the Temperature Experiments.

Duriag the above comparison the arrangement was-
No. Inst. Magnet 2 and E ibrei2.
, $2 \mathrm{n} \quad 1,0, \quad 2$.
The agreement between the ins 'ruments is not good before the temperature experiment during which a slip of 10 y seems to have occurred but as there is no evidence from the curve of No. I Inst. of any sudden movement, the slip probably occurred gradually and may be allowed for in the computations.

D 6.
Comparison of Magnetograpis Nos．I and 2 during the Temperature Experiments．

		Magnetograph No． 1. Scale co－efficient $=4.81 \gamma$ ． Mean value of Base line $=.3322$ ． Selected mean temperature $=21^{\circ} \cdot \mathrm{CC}$ ． Temperature co－efficient $=12.5 \gamma$ ．							Magnetograph No． 2. Scale co－efficient $=3.70 \gamma$ ． Mean value of Base line $=33284$ ． Selected mean temperature $=15^{\circ} \circ \mathrm{C}$ ． Temperature corefficiont $=12.5 \gamma$ ．							First experiment with Magnet 3 and Fibre 3.	
	$\begin{aligned} & \dot{0} \\ & \text { 롤 } \end{aligned}$				辰				$\begin{aligned} & \text { U } \\ & \text { B } \\ & \text { H. } \\ & \text { E } \\ & \text { E } \end{aligned}$			茄					Remaris．
Civil．	L．M．	C	C	$\boldsymbol{\gamma}$	Sc． divn．	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	C．G．S．	C	C	$\boldsymbol{\gamma}$	Sc． divn．	$\boldsymbol{\gamma}$ ．	$\boldsymbol{\gamma}$.	C．G．S．	$\boldsymbol{\gamma}$ ．	
5th Feb． 1902.	10.0	21.4	＋ 0.4	＋5．0	$62 \cdot 3$	2997	3047	－33528	$14 \cdot 9$	－0．1	－1．3	66.8	$247 \cdot 2$	245.9	－33530	－2	The temperatures recorded were observed．
－•	110	＂	＂	＂	$6 \mathrm{~s} \cdot 0$	298.4	298.4	521	150	0.0	0.0	65.0	$240 \cdot 5$	$240 \cdot 5$	525	－4	
－－	12.0	＂	＂	＊	60.5	2910	296．0	519	15.0	0.0	0.0	6．4．4	236.8	23¢ 8	521	－2	
\cdots	13.0	＂	$"$	＊	63.1	303.5	308.5	532	15.2	＋0．2	＋2．5	64.0	236.8	$239 \cdot 3$	523	＋9	
$\cdots \quad$.	140	＂	＂	＂	71.9	3458	350.8	574	$15 \cdot 2$	＋0．2	＋2．5	63.1	233.5	23600	520	＋ 54	
»	150	21.5	0.5	6.3	70.9	34^{10}	347－3	570	$15 \cdot 4$	＋0．4	＋5．0	61.3	226.8	231.9	516	＋54	
	160	21.4	0.4	$5 \cdot 0$	70.9	341.0	346\％	569	156	＋0．6	＋75	60－9	$225 \cdot 3$	232.8	517	＋ 52	
6th $>$	$7 \cdot 45$	2 P .1	0.1	13	74.4	3579	359－2	582	14.8	－0．2	-2.5	63.9	236.4	$233-9$	518	$+64$	
＂	16.0	22.8	1.8	22.5	70.1	$337 \cdot 2$	359.7	583	15.4	＋0．4	＋5．0	63.7	$235 \cdot 7$	$240 \cdot 7$	525	＋58	\int experimeat
7th \quad－	140	22.2	1.2	1500	69－9	336.2	351.2	574	15－0	000	000	61.9	2290	229.0	513	$+61$	

During the above comparison the arrangement was－
No．I lnstrument，Magnet 3 and Fibre 3
The absolute observations from which the base line values are derived occupied from 11.25 to 13.1 on the sth Pebruary and in the case of No． lastrument the last result had to be rejected owing to the appearance of the large and sudden slip that commenced avout 12.50 and ended as $13 \cdot 30$ ．

From this time onwards till Magnet 3 and Fibre 3 were dismounted the agreement between the instruments is fair and there is certainly no evi－ deace of slip in No．I Inst．during the experiment．If anything it would soem that the other instrument was at fault，but the slight discordance of the last three values in the last column is probably accidental．On the whole，it would appear that the temperature experiment with Magnet 3 and Fibre 3 may be accepted and it is regrettable that a further trial was not made with the system．The very obvious shift that occurred just after－ noon on the sth lead to the impression that the fibre was unstable and another one was tried as soon as the trace showed this fault after dovelop－ ment on the 7th tebruary（see Plate V，Fig．i）．

D $\%$

Comparison of Magnetographs Nos. I and 2 during the Temperature Experiment. Ist ana 2nd Experiments with Magnet 3 and Fibre 4.

		Mean value of Base line=-33175. Selected mean temperaturem $2 I^{\circ} .0 \mathrm{C}$. Temperature co-efficient $=12.5 \gamma$.							Magnetograph No. 2. Scale co-efficient $=3 \cdot 70 \%$. Mean value of Base line $=33^{2} 77$. Selected mean temperature $=15^{\circ} \cdot \circ \mathrm{C}$. Temperature corefficient $=12.5 \%$.								
Date.	Hour.		$\begin{aligned} & \text { Difference of temperature } \\ & \text { from selected mean. } \end{aligned}$														Remarks.
Civil.	$\underset{\text { L.M. }}{\text { L. }}$	C.	C.	γ	Sc. divn.	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	C.G.S.	C.	C.	$\boldsymbol{\gamma}$	Sc. divn.	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	C.G.S.	$\boldsymbol{\gamma}$	
8th Feb. 1902	11-0	$20 \cdot 5$	-0.5	-6.3	51	2580	251.7	-33427	146	-0.4	$-5 \cdot 0$	60-6	224.2	$9{ }^{\circ}$		9	The tempera-
"	12-0,	20.7	-0.3	-3.8	51.1	256.5	252.7	428	14.6	-0.4	$-5 \cdot 0$	61.0	225.7	$220^{\circ} 7$	498	70	tures givrn
"	13-0,	20.8	-0.2	-2.5	47.6	$239 \cdot 0$	236.5	412	14.8	-0.2	-2.5	55.9	206.8	204*3	481	-69	were.observed.
"	14^{-0}	20.8	-0.2	-2.5	$48 \cdot 1$	241.5	239-0	414	$15 \cdot 0$	0.0	0.0	55-9	206.8	205.8		-70	68.
"	150	21.0	0.0	0.0	$49 \cdot 9$	250.5	250.5	426	15.1	+0.1	+ $1 \cdot 3$	57.7	213.5	214.8	492	-66	
"	1600	21.1	+0.1	+1.3	$49 \cdot 2$	2470	248.3	423	$15 \cdot 2$	+0.2	$+2.5$	56.2	$207 \cdot 9$	$210^{\circ} 4$		-64	
10th	7-30	19.9	-1.1	-11.8	64.6	$324 \cdot 3$	312.5	488	147	-0.3	-3.8	62.6	231.6	$227^{\circ} 8$	505	-17	Slip of 19% in ist
"	16-0	23.4	+2.4	+30.0	58.0	291.2	321.2	496	$15 \cdot 3$	+0.3	+3.8	57.6	213.1	$216^{\circ} 9$	494	$+2$	experiment.
1 Ith	10-0	20.7	-0.3	-3.8	$67 \cdot 9$	$340 \cdot 9$	337.1	512	148	-0.2	-2.5	64.5	238.7	$236 \cdot 2$	513	-1	
"	110	20.8	-0.2	-2.5	68.1	$341 \cdot 9$	$339 \cdot 4$	514	14.8	-0.2	-2.5	$64 \cdot 9$	240.1	2376			
\%	12-0	18	3	3	69.1	$346 \cdot 9$	$344 \cdot 4$	519	15-0	$0 \cdot 0$	0.0	659	$2+3.8$	$243^{\circ} 8$	521	-2	Date of absolute
"	130	93	3	0	68.7	3449	$342 \cdot 4$	517	$15 \cdot 1$	+0.1	$+1.3$	643	2379	$239^{\circ} 2$	516	+1	observations
"	1.40	33	9	39	$67 \cdot 3$	$337 \cdot 8$	335-3	510	$15 \cdot 2$	+0.2	$+2.5$	62.4	$230 \cdot 9$	$233{ }^{\circ} 4$	510	0	-1.
"	150	\%	9	09	66.8	335-3	332-8	508	15.4	+0.4	+5.0	61.4	$227 \cdot 2$	$232^{\circ} 2$ 230	509	-1	
12 th	16-0	20	0	-11.3	$66 \cdot 9$	$335 \cdot 8$	333-3	508	$15 \cdot 7$	+0.7	$+8 \cdot 8$	600	$222 \cdot 0$	$230{ }^{\circ}$	508		
12th	7-20	20.1	-0.9	-11.3	$69 \cdot 3$	347-9	3360	512	15.4	$+0.4$	+500	62.4	$230 \cdot 9$	$235{ }^{\circ} 9$	513	-1	Slip of it γ in
"	$15-45$	24.5	+3.5	$+43 \cdot 8$	$59 \cdot 0$	296.2	34000	515	16.1	+1.1	+13.8 +88	$58 \cdot 0$	214.6	228.4	505	$+10$	2nd experiment.
13th	10-0	21.2	+0.2	+2.5	73.2	$367 \cdot 5$	37000	545	$15 \cdot 7$	+0.7	$+8.8$	68.4	$253 \cdot 1$	26199	539	46	
"	130	21.2	+0.2	$+2.5$	71.1	$356 \cdot 4$	$359 \cdot 4$	534	15.8	+0.8	$+100$	64.6	23900	249\%	526	$+8$	7.
1 4th	16-0	21.2	+0.2 +1.2	+2.5 +15.0	67-1	336.8 365.5	$339 \cdot 3$ $380 \cdot 5$	51 5 ¢	10.3 15.7	+1.3 +0.7	+16.3 +8.8	58.0	214.6	230.9	508		
1fth	$10-0$	$22 \cdot 2$ 22.0	+1.2 +1.0	+15.0 +12.5	72.8	36	$380 \cdot 5$	556	15.7	+0.7	$+8.8$	69.1	$255 \cdot 7$ 227	$264 \cdot 5$	542	$+14$	
15th "*	140	$22 \cdot 0$	$+1.0$	+12.5 +13.8	68.2	$342 \cdot 4$	354*9	530	16.1	$+1.1$	+138	61.5	$227 \cdot 6$	2414	518	$+12$	
15th "	130	22.1	+1.1 +1.1	+13.8 +13.8	$69 \cdot 7$ $67 \cdot 2$	$349 \cdot 9$ $337 \cdot 3$	363.7 351.1	539 526	16.1 16.3	+1.1 +1.3	+13.8 +16.3	61.3 57.1	226.8 2113	240-6	518		
"	16-0	22.0	$+1.0$	$+12.5$	67.5	3388	$351 \cdot 4$	526	16.8	$+1.8$	+22.5	56.1	$207^{\circ} 6$	230.1	507	+19	
16th	10-0	220	$+1.0$	+12.5	$74 \cdot 0$	371.5	384.0	559	$16 \cdot 5$	$+1.5$	$+18.8$	64.2	$237 \cdot 5$	$256 \cdot 3$	533	+26	26.
"	$13-0$	22.0	$+10$	$+12.5$	$73 \cdot 0$	366.5	379*0	554	16.7	+1.7	+21.3	62.0	$229^{\circ} 4$	$250 \cdot 7$	528	$+26$	Temperature of
17th "	16-0	22.1	+1.1	+13*	68-0	341.4	$355 \cdot 2$	530	16.6	+1.6	+20.0	53.2	196.8	216.8	494	+36	No. 2 at 16 hrs .
17th	10-0	21.9	+ 0.9	+11.3	$72 \cdot 1$	361.9	$373 \cdot 2$	548	16.9	+1.9	+23.8	58.4	216.1	239×9	517	+31	is abnormal.
"	13-0,	21.9	+0.9 +0.6	+11.3	74.0	371.5	$382 \cdot 8$	558	$17 \cdot 2$	+2.2	+ 27.5	$59 \cdot 9$	$221{ }^{\circ} 6$	249.1	526	+32	
th	16-0	21.8	+0.6	+10.0 +8.8	69.7	$3+9 \cdot 9$	359.9	535	$17 \cdot 5$	+2.5	+31.3	52.9	$195{ }^{\circ} 7$	22700	504	+31	31.
18th	1000	21.7	+0.7	+88	$73 \cdot 1$	36700	$375 \cdot 8$	551	$16 \cdot 9$	+1.9	+23.8	580	$214^{\circ} 6$	$238 \cdot 4$	515	+36	
"	13-40	21.8	+0.8	+10.0 +7.5	756	379.5	389.5	565	17.3	+2.3	+28.8	60-0	$222{ }^{\circ}$	250.8	528	+7	
19th	16-20	21.6 21.4	+0.6 +0.4	+7-5	72.9	360.0	$373 \cdot 5$	549	17.8	+2.8	+350 +32.5	54.5	$201^{\circ} 7$	236.7	514	$+35$	36.
19th	$10 \cdot 0$ $13-35$	21.4 21.4	+0.4 +0.4	+5.0 +5.0	73.8	370.5 361.4	$375 \cdot 0$ $366 \cdot 4$	550	176 179	+2.6 +2.9	$+32 \cdot 5$ $+36 \cdot 3$	54.4 510	2013 188.7	$233-8$ $225-0$	511	+39 +39	
\%	16-0	21.8	+0.8	$+10.0$	72.7	$365 \cdot 0$	375.0	550	$1 \mathrm{~S} \cdot 3$	$+3 \cdot 3$	$+41 \cdot 3$	51.0	1887	$230 \cdot 0$	507	+39 +43	41.
20th	10.0	21.6	+0.6	+7.5	$74 \cdot 0$	371.5	379*0	554	$17 \cdot 4$	+2.4	+300	53.0	196'1	$226 \cdot 1$	503	$+51$	

During the above comparison the arrangement was-
No. i Inst., Magnet 3, and Fibre 4 .
" 2 "
A large slip occurred between the 8th and 18th. Nuring the first temperature experiment a slip of about 19γ nccurred and during the second experiment a slip of 10%. Between the two experiments there was $\mathbf{0 0}$ slip, but after the second a steady slip of about 5 to $7 \boldsymbol{\gamma}$ seems to have continued till the system was dismantled.
Obviously these two temperature experiments are mareliable, and ac lar as the ahove figuges go Fibre No. + seems to have been in as uastable condition.

D 8.
Comparison of Magnetograplis Nos. I and 2 during the Temperature Experiment.

During the above comparison the arrangement was-No. I Instrument, Magnet, 1 and Fibre 2.
 doring the actual temperature experiment no shift seems to have occurred, so that the result may be accepted with confidence.

D 9.
Comparison of Magnetograpins Nos. 1 and 2 after the Temperature Experiments.

D 9-contd.

Comparison of Magnetographs Nos. 1 and 2 after the Temperature Experiments-contd.

		Magnetograph No. i. Scale co-efficient $=$ Magnet I\} Mean value of base line $=^{4.00} \gamma$. $\left.{ }_{\text {Fibre } 2}\right\}_{\text {Temperature co-efficient }}=13315$ C. G. S. Selected mean temperature $=22^{\circ} \mathrm{Cent}$.							Magnetograph No. 2. Scale co-efficient $=$ $4.45 \gamma-$ Magnet 3$\}^{\text {Mean value of base line }=\mathbf{M}} \underset{-33300 \mathrm{C} . \mathrm{G} . \mathrm{S} \text {. }}{ }$ Fibre 4$\}$ Temperature co-efficient $=12^{*} 5 \gamma$. Selected mean temperature $\quad=22^{\circ}$ Cent.								
Date.	Hour.														$\begin{aligned} & \stackrel{\rightharpoonup}{4} \\ & \dot{د} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{0} \\ & \stackrel{y}{c} \end{aligned}$		Remarks.
Civil.	L. M.	Cent.	Cent.	$\boldsymbol{\gamma}$ di	Sc.	γ.	γ.	C.G.	Cent.	Cent.	γ.	$\begin{gathered} \text { Sc. } \\ \text { divns. } \end{gathered}$	$\boldsymbol{\gamma}$.	γ.	C. S.	γ -	
15th Mar. 1902		$22 \cdot 2$	+0.2	+3	58.5			$\cdot 33552$	22.0	-0	o	51.0	227	227			
	16-0	22.2	+0.2	+3	54.6	218	221	536	22.1	+0.1	+	47.0	${ }^{209}$	210			
16th ",	${ }^{13} 0$	22.2	+0.2	+3	57.8	231	234	549	$22 \cdot 3$	+0.3	+ 4	49.9	222	226		$1{ }^{-2}$	
"th	$16-0$	22.2	+0.2	+3	54.1	216	2219	534	22.7 22.3	+0.7 +0.3	+9	45.7 47.6	203 212	212 216		1-3	
17th "	13-0	${ }_{22 \cdot 2}^{22.2}$	+0.2 +0.2	+3 +3	$\stackrel{55}{51.7}$	220	223 210	525	22.7	$+{ }_{+}^{+0.3}$	+4	43.8	195	204		$9-4$	
18th ",	13-0	22.2	$+0.2$	+3	56.0	224	227	542	22.6	+0.6	+8	$47 \cdot 9$	213	221		-4	
	16-0	22.2	+0.2	+3	53.0	212	215	530	22.8	$+0.8$	+60	44.7	199 220	200			
19th "	$13-0$ $16-0$	$22 \cdot 2$ $22 \cdot 2$	+0.2 +0.2		53.3	229 212	232 215	547	${ }_{22}^{22 \cdot 5}$	$\stackrel{+0.5}{+0.8}$	${ }_{+10}^{+10}$	45.1	201	211		6-6	
20th "	13-0	22.2	+0.2	+3	61.7	247	250	565	$22 \cdot 4$	$+0.4$	+5	$53 \cdot 1$	236	241		6 -1	
"	$15-0$	22.2	+0.2	+3	55.9	224	227	542	22.6	$\pm{ }_{-0.6}^{+0.6}$	+	47.9	213 240	221		6-4	
${ }^{2}$ 1st "	$13-\mathrm{O}$ $16-0$ 100	${ }_{22}^{22.2}$	+0.2	+3 +5	${ }_{54 \cdot 3}^{61.1}$	244	${ }_{222}^{247}$	${ }_{537}^{502}$	${ }_{22.0}^{21.9}$	-0.1	-1	54.0 48.0	248 214	239 214		4-2	
22nd ",	$16-0$ $13-0$	${ }_{22.2}^{22.4}$	+0.4	+5 +3	59.7	217 239	222 242	537	221.4	-0.6	-80	$54 \cdot 8$	244	236		$1-4$	-
	16 o	22.2	+0.2	+3	54.0	216	219	534	21.8	-0.2	-3	48.8	217	21		9-5	
23 rd "	${ }^{13} \mathbf{3}$	22.2	+0.2	+3	${ }_{56.3}^{58.0}$	${ }_{2}^{232}$	235	550	21.9 22.0	-0.1	-1	53.0 51.6	236 230	235		- 0	
24th ""	$16-\mathrm{o}$ 13	$22 \cdot 2$ $22 \cdot 4$	+0.2		${ }_{56.0}^{56.3}$	${ }_{224}^{227}$	230 229	545	${ }_{21.8}^{22.0}$	- $\begin{array}{r}0.0 \\ -0.2\end{array}$	-	${ }_{52.0}^{51.6}$	230 231 2	223		硅-10	
24	$16-0$	22.4	+0.4	+5	50.9	204	209	524	22.2	$+0.2$	+3	$45 \cdot 9$	204	20,		$32-8$	
25th "	13 -0	22.7	+0.7	+9	56.0	224	233	548	${ }^{21.8}$	-0.2	-3	$52 \cdot 9$	235 188	23		$57-9$	
26th ",	${ }^{16-0}$	22.7 22.6	+0.7 +0.6	+9	$46 \cdot 5$	186	195	510	$22 \cdot 2$	+0.2	+3 +5	$42 \cdot 3$ $49 \cdot 4$	${ }_{22}$	${ }^{191}$			
""	16-0	${ }_{22.6}^{22.6}$	+0.6	+8	49.3	197	20	552	22.8	+0.8	+10	42.9	191	20		6-6	
27 th "	$13-0$	22.6	+0.6	+8	52.7	211	${ }^{219}$	534	23.2 23	+1.2	+15 +18	${ }_{41 \cdot 6}^{44 \cdot 6}$	198 186	21		38-4	\checkmark
28th "	$16-0$ $13-0$	22.6 22.6		+8 +8	($\begin{aligned} & 50 \cdot 3 \\ & 56.9\end{aligned}$	${ }_{228}^{201}$	${ }_{23}^{20}$	524 551	23.4	+1.4 +1.0	+18 +13	${ }_{49}^{4 \cdot}$	${ }_{221}^{181}$	2		29-5	
"	16-0	22.6	+0.6	+8	51.0	204	212	527	$23 \cdot 4$	+1.4	+18	44.1	196	21		$39-12$	
29th "	${ }^{13-0}$	22.7	+0.7	+9	57.0	228	232	552	23.1	+1.1	+14	51.7	230	24		9-17	
3oth "	- $\begin{aligned} & 16-0 \\ & 10-15\end{aligned}$	[$\begin{aligned} & 22.7 \\ & 22 \cdot 4\end{aligned}$	${ }^{+0.7}$	+9 +5	[$\begin{aligned} & \text { 52.1 } \\ & 56.9\end{aligned}$	208 228	(212		23.5 23.0	+1.5 +1.0	($\begin{aligned} & +19 \\ & +13\end{aligned}$	${ }_{51.0}^{46 \cdot 5}$	207 227	${ }_{2}^{22}$		建-19	
30th "	$\begin{aligned} & 10-15 \\ & 13^{-0} \end{aligned}$	$\begin{aligned} & 22 \cdot 4 \\ & 22 \cdot 5 \end{aligned}$	$\begin{array}{r\|r} 4 & +0.4 \\ 5 & +0.5 \end{array}$	+5 +6	56.9 58.6	228 234	${ }^{23}$	548	$5 \begin{aligned} & 23.0 \\ & 23.2\end{aligned}$	$\stackrel{+1.0}{+1.2}$	(120 ${ }^{+13}$	51.0 52.8	227 235	24		5-20	
31st "\#	-	${ }_{2}^{22.5}$	${ }_{5}^{+0.5}$	+6	59.0	${ }_{236}^{234}$	${ }^{24}$	557	${ }_{23 \cdot 6}$	+1.6	+20	51.5	229	24		3-17	
	16-0	22.5	$5+0.5$	$+6$	53.7	215	, 22	I 536	24.0	${ }^{+2.0}$	+25	45.7	203	${ }^{22}$		53-17	
${ }^{1 s t}$ April 1902	13-0	22.6 22.6	${ }^{+0.6}$	+88	8	- 223	${ }^{23}$	11 525	23.8 24.2	$\stackrel{+1.8}{+2.2}$	2	41.7	18	${ }^{4} \quad 23$		-	
2nd " \quad.	10-30	22.7	+0.7	+9	54.0	${ }^{216}$	- 22	$54{ }^{\circ}$	23.8	+1.8	+23	36.6	20	23		55-15	

The instruments are in fair accordance up to 28 th March, though it seems that No. 2 has given way slightly relatively to No, I. After the 28th March up till the end of the comparison the agreement is again good. The relative displacement of the instruments which ozcurred about the 28th March may or may not be due to slip of the tibre, for it must be borne in mind that No. 2 Instrument was not rigidly fixed like No. and that the result noted might have been caused by a shift of one of the wooden tripods due to shriakage of the wood with the increasing heat. Oa the whole it may be concluded that Fibre No. 4 behaved satisfactorily.

PLATTE I

Twe curres are traced from the originals and

reduced by photography to \ddagger coale.

Fg. 1.
Temperature Rxperiment No. 1.
Magnet 1 and Fibre 2 in Instrument No. 1.
Date 6-1-02.

Pig. 3.
Temperature Experiment No. 10
Magnet 1 and Fibre 2 in Instrument No. 1.
Date 24-2-02.

Fig. 2.
Magaet 2 and Fibre 12 in Instrumeat No. 2.
Date 6-1- 08.
.

Fig. 4.
Magnet 3 and Fibre 4 in Inotrument No. 2.
Date 24-2-02.

Digitized by GOOgle

PLATE II

The currees are traced from the originale and
reduced by photography to \ddagger scale.

Pig. 1.
Temperature Experiment No. 2.
Magnet 2 and Fibre 12 in Instrument No. 1.
Date 15-1-02.

19:30 il is is is is 16

Fig. 3.

Temperature kxperiment No. 8.
Magnet 2 and Pibre 18 in Inatrument No. 1.
Dato 20-1-02.

Fig. 2.
Magnet 1 and Pibre 2 in Inatrument No. 2.
Date 15-1-02.

Fig. 4.
Magnct 1 and Fibre 2 in Inotrument No. 2.
Date 80-1-08.

PLATE III.

The curree are traced from the originale and
reduced by photography to it seale.

Fig. 1.
Temperature Experiment No. 4.

Magnet \mathbf{S} and Pibre 6 in Instrament No. 1.

Date 24-1-08.

Fig. 2.
Magnet 1 and Fibre 2 in Instrument No. 2.
Date 24-1- 02.
Fig. 4.
Magnet 1 and Fibre 2 in Instrument No. 2.
Date 28-1-02.

Digitized by GOOg le

PLATE IV.

The curves are traced from the originale and
reduced by photography to \& scale.
Fig. 1.
Temperature Experiment No. 6.

Magnet 2 and Fibre 12 in Inatrument No. 1.

Date 81-1-02.

Fig. 2.
Magnet 1 and Fibre 2 in Inatrument No. 8.
Date 31-1- 08.

[^5]
PLATE V

The carree are trooed from the originalo and

 reduoed by photography to t coella.
Fig. 1.

Portion of Ourre on 5-2-02
Showing the 8lip of Fibre No. 3
Mounted in Inderument No. 1.

-
$18 \quad 13 \quad 14$

Fig. 3.
Temperature Experiment No. 7. Magnet 3 and Fibre 8 in Instrumeat No. 1.

Date 8-2-02.

Fig. 2.
Partion of Curve on 5-2-02
Correponding to that ahowa in Fig. 1
Magnet 1 and Fibre 2 in Instrument No. 2.

Fig. 4.
Magnet 1 and Yibre 2 in lantrument No. 2.
Date 6-2-02.
\qquad
\qquad
onamow, Google

PLATE VI.

The carves are traced from the originale and
 reduoced by photography to it scale.

Fig. 1.
Temperature Experiment No. 8.

Magret 8 and Pibre 4 in Instrument No. 1.

Date 10-2-02.

Fig. 2.
Magnet 1 and Fibre 2 in Instrument No. 2.
Date 10-2- 02.

Fig. 3.
Temperature Experiment No. 0.
Magnet 3 and Fibre 4 in Instrument No. 1.
Date 12-8-08.

Fig. 4.
Kagnet 1 and Fibre 2 in Inotrament No. 2.

Dese 12-8-08.

[^6]III. 31st Jan 02.

 $\begin{aligned} & \text { NOTE }-\mathbf{A}=\text { H. F. Thermometer } \\ & \mathbf{B}=\text { Thermometer on table } \\ & \mathbf{C}=\text { Thermometer near H. F. tube } \\ & \text { The numbers enclosed in circles are }\end{aligned}$ $\begin{aligned} & \text { NOTE }-\mathbf{A}=\text { H. F. Thermometer } \\ & \mathbf{B}=\text { Thermometer on table } \\ & \mathbf{C}=\text { Thermometer near H. F. tube } \\ & \text { The numbers enclosed in circles are }\end{aligned}$

Fin

-

89078548351

B89078548351A

PROFESSIONAL PAPERS. igo5.

SERIAL No. 8.
\qquad
EXPERIMENTS MADE TO DETERMINE THE TEMPERATURE CO-EFFICIENTS OF WATSON'S MAGNETOGRAPHS,

BY
Captain H. A. Denholm Fraser, R.E., DEPUTY SUPERINTENDENT SURVEY OF INDIA.

PREPARED UNDER THE DIRECTION OF

 Colonel J. R. Hobday, I.A., oprg. surveyor general op india.

CALCUTTA:
OFFICE OF THE SUPERINTENDENT OF GOVERNMENT PRINTING, INDIA. 1905.

[^0]: * \boldsymbol{y} is the symbol generally used to denote $0 \cdot 00001$ C. G. S. units, where C. G. S. stand for centimetre, gramme, second respectively. In the English system the corresponding units are the foot, the grain, and the second.
 $\boldsymbol{\gamma}=0.000217$ English units approximately.

[^1]: - Threlfall (Phil. Mag., July 1890).

[^2]: * Throughout the reductions the temperature used in computing the temperature co-efficient was that recorded by the thermometer embedded in the damping box of the H. F. magnot.

[^3]: - Highest temperature $=28^{\circ} 44$ on moth September 1902.

 Lowest " $\quad \mathbf{- 2 2 . 0 0}$ on 28th March 1903.

[^4]: * Suppose the temperature of the room to be 30° and that of the deflecting magnet 20° (on the average) whilst a set of deflections was being taken.

 Then putting $m=1004 \cdot 23$ at 0° Cent.
 We obtain from the temperature corrections for the magnet used

 $$
 \begin{aligned}
 & m=996 \cdot 44 \text { at } 20^{\circ} \text { Cent. } . \\
 & m=992^{\circ} 28 \text { at } 30^{\circ} \text { Cent. } .
 \end{aligned}
 $$

[^5]: Digitized by GOOg O

[^6]: NOTE $-A=H$. F. Thermometar
 $B=$ Theprmometer on table
 The nambers enclosed in circles are the Serial Noa of the experiments.

